МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ

Кафедра химии и биологии

«УТВЕРЖДАЮ»

Зав. кафедрой «Химии и биологии» «28» августа 2023 г.

___ Бердиев А.Э.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Органическая химия

Направление подготовки-04.03.01 «Химия»

Профиль подготовки - «Общая химия» Форма подготовки-очная Уровень подготовки-бакалавриат

ПАСПОРТ

ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ по дисциплине <u>Органическая химия</u>

1.3. Требования к результатам освоения дисциплины

	1.3. Треоования к результатам освоения дисципли	пы	T	1	1
				Оценочны	е средства
№ пп	Контролируемые разделы, темы, модули ¹	Формируем ые компетенци и	Индикаторы достижения компетенции*	Количес тво тестовы х заданий	Другие оценочн ые средства Вид
1	Основные понятия органической химии. Предмет органической химии и связь с другими химическими науками, биологией, медициной. Сырьевые источники органических соединений. Значение соединений углерода в практической деятельности человечес кого общества.	ОПК-1. Способен анализиров ать и интерпрети ровать результаты	ОПК-1.1. Систематизирует и анализирует результаты химических экспериментов, наблюдений, измерений, а также	12	Опрос. Защита реферата Доклад.
2	Реакционная способность органических соединений Химическая связь и реакционная способность органических соединений. Химическая связь как проявление единого взаимодействия в молекуле. Типы химической связи: ионная, ковалентная, семиполярная. Направленность связи.	химических эксперимен тов, наблюдений и измерений	результаты расчетов свойств веществ и материалов ОПК-1.2. Предлагает интерпретацию результатов собственных экспериментов и	12	Опрос. Защита реферата Доклад.
3	Непредельные углеводороды ряда этилена. Гомологический ряд алкенов, их изомерия, номенклатура. Геометрическая (цис-, транс-) изомерия. Описание электронного строения алкенов в терминах локализованных σ- и π -молекулярных орбиталей. Разложение четвертичных аммониевых оснований (реакция Гофмана)		расчетно- теоретических работ с использованием теоретических основ традиционных и новых разделов химии ОПК-1.3. Формулирует	12	Опрос. Защита реферата Доклад.
4	Углеводороды с двумя двойными связями. Классификация, изомерия и номенклатура. Электронное строение сопряженных диенов: π,π-сопряжение,представления о делокализованных π-молекулярных орбиталях. Важнейшие 1,3-диены (бутадиен, изопрен) и		заключения и выводы по результатам анализа литературных данных, собственных экспериментальных и расчетно-теоретических работ	12	Опрос. Защита реферата Доклад.
5	Ацетиленовые углеводороды Изомерия и номенклатура. Молекулярно-орбитальное описание тройной связи, sp-гибридизация. Методы образования тройной связи, основанные на реакциях дегидрогалогенирования. Карбидный и пиролитический методы синтеза ацетилена.		химической направленности ОПК-3.1. Применяет теоретические и полуэмпирические модели при решении задач химической направленности.	12	Опрос. Защита реферата Доклад.

6	Циклические углеводороды Классификация, номенклатура и структурная изомерия. Относительная устойчивость циклов, ее анализ на основе представлений о различных типах напряжений: угловое и торсионное. Геометрическая изомерия.	ОПК-3. Способен применять расчетно	ОПК-3.3.Использует стандартное программное обеспечение при решении задач химической	12	Опрос. Защита реферата Доклад.
7	Ароматические углеводороды Бензол и его гомологи, изомерия, номенклатура. Противоречие между формальной ненасыщенностью бензольного кольца и химическими свойствами бензола: относительная устойчивость к окислению, склонность к реакциям замещения, термохимия гидрирования. Формулы Кекуле, Дьюара, Ладенбурга.	теоретическ ие методы для изучения свойств веществ и процессов с	направленности ОПК-3.3. Решает задачи химической направленности с использованием специализированного программного	12	Опрос. Защита реферата Доклад.
8	Галогенпроизводные углеводородов Моногалогенопроизводные алифатических углеводородов, их изомерия и номенклатура. Способы образования связи С-Hal: замещение атома водорода и гидроксильной группы, реакции присоединения по кратным связямэтилена.	их участием с использова нием современно й	обеспечения ПК-2.1. способность применения оборудования для физических и физикохимических методов	12	Опрос. Защита реферата Доклад.
9	Спирты Одноатомные насыщенные спирты. Изомерия, классификация, номенклатура. Методы синтеза: присоединение воды к двойной связи, гидролиз связи С-Hal, восстановление карбонильной и карбоксильной групп, синтезы с использованием металлорганических соединений.	вычислител ьной техники. ПК-2	анализа простых химических объектов; возможности и ограничения применения современных физических и физико-	10	Опрос. Защита реферата Доклад.
10	Простые эфиры Классификация, номенклатура. Диалкиловые эфиры. Методы синтеза: дегидратация спиртов, реакция Вильямсона, присоединение спиртов к олефинам. Расщепление простой эфирной связи (гидролиз). Взаимодейст вие эфиров с протонными кислотами и кислотами Льюиса. Эфираты	Способен использоват ь совре- менную аппаратуру при проведении научных	химических методов анализа сложных химических объектов ПК-2.2. проводить калибровку и настройку серийного оборудования химических	12	Опрос. Защита реферата Доклад.
11	Карбонильные соединения Классификация и номенклатура. Способы образования карбонильной группы:	исследова- ний усвоения знаний	лабораторий; анализировать химические вещества и объекты и	12	Опрос. Защита реферата Доклад.
12	Двухосновные и непредельные карбоновые кислоты Дикарбоновые кислоты. Номенклатура и классификация. Методы синтеза: окисление циклоалканов, алицикличес ких спиртов и кетонов, ароматических и алкилароматических углеводородов, гидролиз динитрилов.	учащимися с разным уровнем базовой подготовки	контролировать протекание процессов на серийном и сложном научном оборудовании ПК-2.3. владение практическими навыками работы на серийном научном оборудовании	12	Опрос. Защита реферата Доклад.
13	Нитросоединения Номенклатура и классификация. Способы получения нитросоединений: нитрование углеводородов (радикальное и электрофильное замещение), обмен атома галогена на нитрогруппу, окисление аминов, синтез через соли диазония		химических лабораторий (фотометры, иономеры, рН-метры, весы, термостаты); теоретическими	15	Опрос. Защита реферата Доклад.

14	Амины Классификация, номенклатура. Способы получения, основанные на реакциях нуклеофильного замещения в галоген-, гидрокси- и аминопроизводных алифатических и ароматических углеводородов; слот (реакция Лоссена)	основами и практическими навыками работы на сложном научном оборудовании химических	12	Опрос. Защита реферата Доклад.
15	Диазо- и азосоединения Диазотирование ароматических аминов (реакция Грисса). Электронное строение, катион диазония, как электрофильный реагент. Взаимопревращения различных форм диазосоединений. Реакции солей диазония,	лабораторий (хроматографы, полярографы, спектрофотометры, кулонометры)	12	Опрос. Защита реферата Доклад.
16	Углеводы Классификация, строение, номенклатура. Методы синтеза оксиоксо-соединений различных типов. Гликолевый и глицериновый альдегиды; диоксиацетон. Оптическая изомерия глицеринового альдегида.		12	Опрос. Защита реферата Доклад.
	Bcero:		150	

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Естественнонаучный факультет

Кафедра химии и биологии по «Органической химии» для 04.03.01 «Химия»

Билет № 1

Инструкция для студента

Внимательно прочитайте задание.

Ответьте на вопросы и выполните практическое задание.

Время выполнения задания – 30 минут

Задание

- 1. Способы получения предельных углеводородов.
- 2. Диены. Особенности сопряженных двойных связей.

Anones a constitution for home and the second				
3.Сколько литров муравьиного альдегида получится при окисления 16кг метилового спирта, со	держащег	o 20%	% примесей	?
Утверждено на заседании кас	федры			
протокол №	ot «		20	_г.
Заве. кафедрой			Бердиев А.	Э

Контрольные задания для подготовки к экзамену:

- 1. Типы химических связей в органических соединениях.
- 2. Понятие о механизмах органических реакций. Типы разрыва связей.
- 3. Взаимное влияние атомов в органических соединениях.
- 4. Качественный анализ органических соединений. Способы выделения и очистки.
- 5. Виды изомерии органических соединений.
- 6. Алканы. Гомологический ряд, изомерия, номенклатура. Нахождение алканов в природе.
- 7. Химические свойства алканов. Механизм реакций радикального замещения.
- 8. Способы получения предельных углеводородов.
- 9. Химические свойства алкенов.
- 10. Способы получения алкенов.
- 11. Строение алкенов, номенклатура, изомерия, классификация. .
- 12. Изомерия и номенклатура непредельных углеводородов.
- 13. Понятие о стероидах и изопреноидах.
- 14. Механизм электрофильного присоединения (алкены, алкины, алкадиены).
- 15. Диены. Особенности сопряженных двойных связей.
- 16. Полимеры. Методы получения, свойства, применение.
- 17. Алкины. Изомерия. Номенклатура. Строение тройной связи.
- 18. Химические свойства алкинов.

- 19. Химические свойства алкинов. Реакции подвижного водородного атома.
- 20. Способы получения алкинов.
- 21. Ацетилен. Получение, свойства, применение.
- 32. Реакции присоединения, окисления и замещения в ароматическом ряду.
- 33. Способы получения ароматических углеводородов
- 34. Галогенопроизводные углеводородов. Изомерия. Методы получения.
- 35. Реакции алифатического нуклеофильного замещения в ряду галогенопроизводных и спиртов.
- 36. Спирты. Классификация, номенклатура, изомерия, физические свойства.
- 37. Химические свойства спиртов.
- 38. Многоатомные спирты. Получение, свойства, применение.
- 39. Методы получения спиртов.
- 40. Химические свойства фенолов. Реакции галогенирования, нитрования.
- 41. Простые эфиры. Получение, свойства, применение.
- 42. Альдегиды и кетоны. Строение. Изомерия. Номенклатура.
- 43. Способы получения альдегидов и кетонов.
- 44. Свойства альдегидов и кетонов. Реакции присоединения к карбонильной группе.
- 45. Альдольная и кротоновая конденсация.
- 46. Карбоновые кислоты. Классификация, строение, номенклатура.
- 47. Химические свойства карбоновых кислот.
- 48. Способы получения карбоновых кислот.
- 49. Реакции этерификации. Механизм.
- 50. Производные карбоновых кислот.
- 51. Понятие о липидах. Классификация. Фосфолипиды.
- 52. Жиры. Состав, строение, свойства.
- 53. Жиры. Жидкие и твердые. Гидролиз, гидрогенизация.
- 54. Мыла. Получение, строение.
- 55. Оксикислоты. Стереоизомерия. Оптическая активность.
- 56. Оксикислоты. Способы получения.
- 57. Оксикислоты. Химические свойства.
- 58. Оксокислоты. Получения и химических свойства их.
- 59. Ацетоуксусный эфир. Кето-енольная таутомерия.
- 60. Классификация и изомерия моносахаридов. Энантиомеры, диастереомеры.
- 61. Химические свойства моносахаридов.
- 62. Химические свойства моносахаридов. Окисление, восстановление, простые и сложные эфиры.
- 63. Гликозиды. Цикло-цепная таутомерия моносахаридов.
- 64. Дисахариды. Строение и свойства сахаров.
- 65. Восстанавливающие и невосстанавливающие дисахариды. Строение и свойства
- 66. Лактоза и сахароза. Гидролиз.
- 67. Крахмал. Амилоза и амилопектин. Клетчатка. Строение, свойства.
- 68. Амины. Классификация. Способы получения.
- 69. Алифатические амины.
- 70. Ароматические амины. Анилин. Применение.
- 71. Химические свойства алифатических и ароматических аминов.
- 72. Аминокислоты. Методы получения
- 73. Свойства аминокислот. Внутренние соли. Пептидная связь.
- 74. Белки. Классификация. Свойства, структура и функции белков.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: он обнаруживает обнаружившему высокий, продвинутый уровень сформированности компетенций, если он глубоко и прочно усвоил программный материал курса, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами и вопросами, причем не затрудняется с ответами при видоизменении заданий, правильно обосновывает принятые решения, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется обучающемуся, если: он обнаруживает повышенный уровень сформированности компетенций, твердо знает материал курса, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется обучающемуся, если: он обнаруживает пороговый уровень сформированности компетенций, имеет знания только основного материала, но не усвоил его деталей, допускает

неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических задач;

Оценка «неудовлетворительно» выставляется обучающемуся, если: он обнаруживает недостаточное освоения порогового уровня сформированности компетенций, не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями решает практические задачи или не справляется с ними самостоятельно.

Оценка «зачтено» выставляется обучающемуся, если: он знает основные определения, последователен в изложении материала, демонстрирует базовые знания дисциплины, владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «не зачтено» выставляется обучающемуся, если: он не знает основных определений, непоследователен и сбивчив в изложении материала, не обладает определенной системой знаний по дисциплине, не в полной мере владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка не выставляется обучающемуся, если он не явился на экзамен, отказался от его сдачи, не знает программный материал, не может решить практические задачи.

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Естественнонаучный факультет Кафедра химии и биологии Комплексный экзамен для выпускников бакалавриата направления 04.03.01~«Химия» Билет № 1

- 1. Растворы, классификация. Концентрация раствора, способы ее выражения.
- 2. Алкины. Изомерия. Номенклатура. Строение тройной связи. Химические свойства алкинов.
- 3. Идеальные и неидеальные растворы. Закон Рауля.
- 4. Закон действующих масс. План конспект урока.

Утвержд	(ено на заседании кафедры
«Химии и биологии»	
протокол № от «» апреля 20	Γ.
Зав. кафедрой	Бердиев А.Э.
Декан факультета	Махмадбегов Р.С

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. В ответе отражены все дидактические единицы, предусмотренные заданием. Продемонстрировано знание фактического материала, отсутствуют фактические ошибки.
- 2. Продемонстрировано уверенное владение понятийно- терминологическим аппаратом дисциплины (уместность употребления, аббревиатуры, толкование и т.д.), отсутствуют ошибки в употреблении терминов. Показано умелое использование категорий и терминов дисциплины в их ассоциативной взаимосвязи. Продемонстрировано умение аргументировано излагать собственную точку зрения. Видно уверенное владение освоенным материалом, изложение сопровождено адекватными иллюстрациями (примерами) из практики.
- 3. Ответ четко структурирован и выстроен в заданной логике. Части ответа логически взаимосвязаны. Отражена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа укладывается в заданные рамки при сохранении смысла.
- 4. Высокая степень самостоятельности, оригинальность в представлении материала: стилистические обороты, манера изложения, словарный запас. Отсутствуют стилистические и орфографические ошибки в тексте. Работа выполнена аккуратно, без помарок и исправлений.

Оценка «хорошо» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. Продемонстрировано знание фактического материала, встречаются несущественные фактические ошибки.
- 2. Продемонстрировано владение понятийно-терминологическим аппаратом дисциплины (уместность употребления, аббревиатуры, толкование и т.д.), отсутствуют ошибки в употреблении терминов. Показано умелое использование категорий и терминов дисциплины в их ассоциативной взаимосвязи. Продемонстрировано умение аргументировано излагать собственную точку зрения. Изложение отчасти сопровождено адекватными иллюстрациями (примерами) из практики.
- 3. Ответ в достаточной степени структурирован и выстроен в заданной логике без нарушений общего смысла. Части ответа логически взаимосвязаны. Отражена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа незначительно превышает заданные рамки при сохранении смысла.
- 4. Достаточная степень самостоятельности, оригинальность в представлении материала. Встречаются мелкие и не искажающие смысла ошибки в стилистике, стилистические штампы. Есть 1-2 орфографические ошибки. Работа выполнена аккуратно, без помарок и исправлений.

Оценка «удовлетворительно» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. Продемонстрировано удовлетворительное знание фактического материала, есть фактические ошибки (25-30%).
- 2. Продемонстрировано достаточное владение понятийно- терминологическим аппаратом дисциплины, есть ошибки в употреблении и трактовке терминов, расшифровке аббревиатур. Ошибки в использовании категорий и терминов дисциплины в их ассоциативной взаимосвязи. Нет собственной точки зрения либо она слабо аргументирована. Примеры, приведенные в ответе в качестве практических иллюстраций, в малой степени соответствуют изложенным теоретическим аспектам.
- 3. Ответ плохо структурирован, нарушена заданная логика. Части ответа разорваны логически, нет связок между ними. Ошибки в представлении логической структуры проблемы (задания): постановка проблемы аргументация выводы. Объем ответа в существенной степени (на 25-30%) отклоняется от заданных рамок.
- 4. Текст ответа примерно наполовину представляет собой стандартные обороты и фразы из учебника/лекций. Обилие ошибок в стилистике, много стилистических штампов. Есть 3-5 орфографических ошибок. Работа выполнена не очень аккуратно, встречаются помарки и исправления

Оценка «неудовлетворительно» выставляется обучающемуся, если:

- 1. Содержание ответа не соответствует теме задания или соответствует ему в очень малой степени Продемонстрировано крайне низкое (отрывочное) знание фактического материала, много фактических ошибок практически все факты (данные) либо искажены, либо неверны.
- 2. Продемонстрировано крайне слабое владение понятийно- терминологическим аппаратом дисциплины (неуместность употребления, неверные аббревиатуры, искаженное толкование и т.д.), присутствуют многочисленные ошибки в употреблении терминов. Показаны неверные ассоциативные взаимосвязи категорий и терминов дисциплины. Отсутствует аргументация изложенной точки зрения, нет собственной позиции. Отсутствуют примеры из практики либо они неалекватны.
- 3. Ответ представляет собой сплошной текст без структурирования, нарушена заданная логика. Части ответа не взаимосвязаны логически. Нарушена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа более чем в 2 раза меньше или превышает заданный.
- 4. Текст ответа представляет полную кальку текста учебника/лекций. Стилистические ошибки приводят к существенному искажению смысла. Большое число орфографических ошибок в тексте (более 10 на страницу). Работа выполнена неаккуратно, с обилием помарок и исправлений

Оценка не выставляется обучающемуся, если он отсутствовал или не предоставил контрольную работу по ее окончании.

Перечень оценочных средств

		Перелень одено ниых ередеть	П
№ п/п	Наименование оценочного средства	Характеристика оценочного средства	Представление оценочного средства в ФОС
1.	Опрос	Опрос используется для контроля знаний студентов в качестве проверки результатов освоения вопросов учебной дисциплины	Вопросы по темам
2.	Защита реферата	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а так же собственные взгляды на неё.	Темы рефератов.
3.	Доклад	Продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской и научной темы.	Темы докладов.

МОУ ВО «Российско-Таджикский» (Славянский) университет»

Кафедра химии и биологии

УСТНЫЙ ОПРОС

по дисциплине Органической химии

Вариант- 1.

"Углеводороды"

Классификация органических соединений.

Методы получения и химические свойства алканов. Методы получения и химические свойства алкенов. Методы получения и химические свойства диенов. Методы получения и химические свойства аренов. Механизмы органических реакций.

Вариант- 2.

"Спирты и карбонильные соединения"

Спирты. Классификация, номенклатура. Промышленные источники: гидратация алкенов, ферментативный гидролиз углеводов, гидролиз алкилгалогенидов. Физические свойства. Водородные связи, растворимость в воде. Химические свойства. Кислые и основные свойства спиртов. Образование солей, протонирование, Образование простых эфиров Дегидратация этерификация. как результат нуклеофильного замещения. спиртов. Окисление. Фенолы. Способы введения гидроксильной группы в ароматическое кольцо: гидролиз арилгалогенидов, щелочной плав сульфокислот, кумольный синтез. Химические свойства. Реакции электрофильного замещения. Кислотность фенолов. Образование простых эфиров фенолов (синтез Вильямсона). Фенолформальдегидные смолы. Фенолы в растениях. Лигнин. Карбонильные соединения. Классификация, номенклатура. Способы образования карбонильной группы: окисление алканов и алкилароматических соединений, озонолиз олефинов, гидратация алкинов, гидролиз гемдигалогенидов, окисление спиртов, электрофильное ацилирование ароматических соединений. Химические свойства. Электронное строение карбонильной группы. Взаимодействие с нуклеофильными реагентами: водой, спиртами, аминами, магний- и литийорганическими соединениями. Кето-енольная таутомерия. Альдольно-кротоновая конденсация. Окислительновосстановительные превращения альдегидов и кетонов.

Вариант- 3.

по теме "Карбоновые кислоты"

- 1. Номенклатура карбоновых кислот.
- 2. Классификация карбоновых кислот.
- 3. Методы получения одноосновных карбоновых кислот.
- 4. Методы получения двухосновных карбоновых кислот.

Вариант- 4

по теме "Амины и диазосоединения"

Классификация, номенклатура. Методы получения, основанные на реакциях нуклеофильного замещения в галоген- и гидроксипроизводных углеводородов; реакциях восстановления нитросоединений (гидрирование нитробензола в кислой и щелочной средах), азотсодержащих производных карбонильных соединений и карбоновых кислот; перегруппировок амидов (Гофман), гидразидов (Курциус, Шмидт), карбоновых кислот и оксимов (Бекман). - Электронное и пространственное строение аминогруппы. - Химические свойства. Основность и кислотность аминов, влияние природы заместителя (алкильных, арильных) на кислотно-основные свойства аминов. Взаимодействие с электрофильными реагентами: алкилирование, оксиалкилирование, ацилирование. Реакции с азотистой кислотой: различия в химическом поведении первичных, вторичных и третичных аминов, а также алифатических и ароматических аминов.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: он принимает активное участие в обсуждении, работе коллоквиума и при этом выражает свою точку зрения аргументировано, обоснованно, приводит доказательственную базу, хорошо знает основную канву происходивших событий и явлений, способен выявлять и анализировать их причины и последствия, выстраивать причинно-следственные цепочки;

Оценка «хорошо» выставляется обучающемуся, если: он принимает активное участие в работе коллоквиума, хорошо знает канву происходивших событий и явлений, но при этом не всегда в полной мере может обоснованно и аргументировано обосновать свою точку зрения, имеет проблемы при приведении доказательной базы своих суждений, при выстраивании причинно-следственных цепочек;

Оценка «удовлетворительно» выставляется обучающемуся, если: он не очень активно участвовал в обсуждении, в работе коллоквиума, имеет поверхностные знание о происходивших событиях и явлениях и не может убедительно сформулировать и отстоять свою точку зрения.

Оценка «неудовлетворительно» выставляется обучающемуся, если: он практически не принимал участие в обсуждении темы коллоквиума, не обладает достаточным количеством знаний по рассматриваемой проблеме, не может сформулировать свое отношение к ней, аргументировать ее.

Оценка не выставляется обучающемуся, если он отсутствовал или не принимал участие в коллоквиуме.

Оценка «зачтено» выставляется обучающемуся, если: он знает основные определения, последователен в изложении материала, демонстрирует базовые знания дисциплины, владеет необходимыми умениями и навыками при выполнении практических заланий.

Оценка «не зачтено» выставляется обучающемуся, если: он не знает основных определений, непоследователен и сбивчив в изложении материала, не обладает определенной системой знаний по дисциплине, не в полной мере владеет необходимыми умениями и навыками при выполнении практических заданий.

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ВОПРОСЫ ДЛЯ ПРОМЕЖУТОЧНОГО КОНТРОЛЯ ЗНАНИЙ ПО ДИСЦИПЛИНЕ

Органической химии

- 1. Укажите особенности органических соединений.
- 2. Теория химического строения А.М. Бутлерова. Ее основные положения.
- 3. Углеводороды и их классификация. Что такое гомологический ряд?
- 4. Углеводороды и их изомерия. Написать все возможные изомеры для бутана и бутена, а также для диметилбензола.
- 5. Типы химических реакций и механизм их протекания для конкретного класса органических соединений. Способы получения углеводородов и их химические свойства (показать на конкретных примерах).
- 6. Какие соединения называются спиртами? Какова их общая формула? Чем определяется атомность спиртов?
- 7. Как изменяются физические и химические свойства спиртов с увеличением углеводородного радикала и количества гидроксильных групп?
- 8. Как называется функциональная группа альдегидов и кетонов?
- 9. Какие типы реакций характерны для карбонильных соединений?
- 10. Существует ли взаимосвязь между спиртами и карбонильными соединениями?
- 11. Какими качественными реакциями можно различить многоатомные спирты, фенолы, альдегиды?
- 12. Амины, как производные углеводородов и аммиака. Какова общая формула аминов?
- 13. Какие амины обладают более сильными основными свойствами?
- 14. Какими химическими свойствами обладают аминокислоты?

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ТЕСТОВЫЕ ВОПРОСЫ

к экзамену по дисциплине Органической химии

```
Вариант-1.
Общие формулы алканов и циклоалканов соответственно выражаются:
SA) CnHan M CnHan-2 .
     СпНап+2 и СпНап-1
    СпНапи СпНап
$D) CnH2n+2 M CnH2n-2.
$E) СпНан-2 и СпНан-3 .
Какое свойство указывает на принадлежность углеводорода к предельным соединениям:
$А) Углеводород не вступает в реакции присоединения;
$В) Молекула углеводорода содержит только о-связи;
$С) Углеводород не реагирует с бромной водой;
$D) Углеводород вступает в реакции замещения с хлором и с азотной кислотой;
$E) Молекула углеводорода содержит только π-связи;
Вариант-3.
Назовите углеводород по международной номенклатуре. CH_3-C(CH_3)_2-C(CH_3)_2-CH_3.
$А) 2,3-диметилбутан;
$В) 2,2,3-триметилбутан;
$C) 2,3,3-тетраметилбутан;
$D) Октан;
$E) 2,2,3,3-тетраметилбутан;
Вариант-4.
Какие исходные вещества используются при получении алкана из ацетилена:
A) C_2H_2+2H_2;
$B) C_2H_2+Br_2;
$C) C<sub>2</sub>H<sub>2</sub>+H<sub>2</sub>O;
$D) C<sub>2</sub>H<sub>4</sub>+H<sub>2</sub>;
E) C_2H_2+Cl_2;
Вариант-5.
Какой углеводород образуется при взаимодействии металлического натрия с 1,3-дибромпентаном:
$А) пентан;
$В) пропан;
$С) циклопропан;
```

```
$D) декан;
$Е) этилциклопропан;
Вариант-6.
При циклизации какого углеводорода образуется метилциклонексан:
$А) пропан;
$В) гексан:
$С) этан;
$D) гептан;
$Е) октан;
Вариант-7.
Напишите уравнение реакции горения этана, сколько моль воды образуется при сгорании 1 моль этана:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
Вариант-8.
Напишите схему реакции циклогексана с хлором и укажите тип реакции:
$А) присоединения;
$В) замещения;
$С) этерификация;
$D) гидрирование;
$Е) окисления;
Вариант-9.
Какой галогеналкан необходимо взять, чтобы по реакции Вюрца без побочных продуктов
получить гексан:
$А) этан;
$В) хлорэтан;
$С) дихлорэтан;
$D) 2-хлор;
$Е) 1-хлорпропан;
Вариант-10.
Осуществите следующую схему превращений 1,3-дибромпропан + 2Na \to A + ^{\text{Hz}} \to Б
Назовите вещества А и Б:
$А) пропан и циклопропан;
$В) циклопропан, циклогексан;
$С) циклопропан, гексан;
$D) циклопропан, пропан;
$E) циклопентан, бутан;
Вариант-11.
Чем отличаются непредельные углеводороды от других углеводородов:
$А) способностью к полимеризации;
$В) вступают в реакции этерификации;
$C) наличием π-связи между атомами углерода;
$D) нехватка ато;мов водорода по сравнению с алканами;
$Е) наличием о-связи между атомами углерода;
Вариант-12.
Назовите углеводород по международной номенклатуре. CH_3 - CH_2 - CH(CH_3) - C = CH.
$А) 3-метилпентин-1;
$В) 3-метилбутин-4;
$C) 3-метилбутин-1;
$D) 3-метилбутин-2;
$E) 3-метилбутин-3;
Вариант-13.
Назовите углеводород по международной номенклатуре. CH<sub>3</sub> - CH<sub>2</sub> - C(CH<sub>3</sub>) = CH<sub>2</sub>:
$A) 2-этилпропен-1;
$В) 3-этилбутен-1;
$C) 2-метилбутин-1;
$D) 3-метилбутин-2;
$E) 2-метилбутен-1;
Вариант-14.
Сколько алкинов может образоваться при каталитическом дегидрировании 2,3,3-триметил-гексана:
$A) 1;
$B) 5;
```

```
$C) 3;
$D) 4;
$E) 2;
Вариант-15.
Из какого спирта можно получить бутен-2:
$А) бутанол-1;
$В) бутанол-2;
$С) бутанол-4;
$D) алкены из спиртов не образуются;
$E) пентанол-1;
Вариант-16.
Какой непредельный углеводород можно получить из 1,1-дибромбутана:
$А) бутен-1;
$В) бутин-2;
$С) бутадиен-1,3;
$D) бутин-1;
$Е) пентан;
Вариант-17.
Из какого соединения в одну стадию нельзя получить пропен:
$А) пропанол-1;
$В) пропанол-2;
$С) 1,1-дибромпропан;
$D) пропин;
$Е) 1,2-дибромпропан;
Вариант-18.
С каким веществом реагируют алкины, но не реагируют алкены:
$А) бром;
$В) вода;
$С) водород;
$D) аммиачный раствор хлорида меди (I);
$Е) кислород;
Вариант-19.
Этан образуется из этилена в реакции:
$А) изомеризации;
$В) дегидрирования;
$С) гидрирования;
$D) гидратации;
$Е) окисления;
Вариант-20.
Укажите механизм реакции присоединения воды к алкенам:
$А) электрофильное гидрирование;
$В) электрофильное присоединение;
$С) нуклеофильное присоединение;
$D) радикальное присоединение;
$Е) электрофильное замещения;
Вариант-21.
Напишите структурную формулу толуола и укажите общее число sp^2-гибридизованных атомов углерода:
$A) 3;
$B) 5;
$C) 6;
$D) 7;
$E) 8;
Вариант-22.
Из перечисленных соединений выберите гомолог бензола:
$А) гексадиен-1,4;
$В) триацетилен;
$С) гексатриен-1,3,5;
$D) толуол;
$Е) стирол;
Вариант-23.
Углеводород является ароматическим, если имеет:
$А) плоский углеродный скелет;
$В) циклический углеродный скелет;
$C) делокализованную циклическую систему, содержащую (4n+2) π-электронов;
$D) пункты А, В, С, являются правильными;
```

```
$Е) пункты А, В, С, D являются неправильными;
Вариант-24.
Напишите уравнение реакции получения бензола из циклогексана и укажите коэффициент перед молекулярным водородом:
$A) 1;
$B) 3:
$C) 4:
$D) 5;
$E) 6;
Вариант-25.
Назовите промежуточное вещество Х в двух стадийном синтезе бензола по схеме:
бромпропан\rightarrowX\rightarrowбензол:
$А) гексан;
$В) пропен;
$С) циклогексан;
$D) ацетилен;
$Е) пропан;
Вариант-26.
С каким веществом реагируют ароматические углеводороды и не реагируют алканы:
$A) <sup>J</sup>:
$B) Cla :
$C) HNO::
D) водным раствором MnO_4:
$E) C:H:C1:
Вариант-27.
Реакция бензола с хлором в присутствии катализатора хлорида алюминия протекает по
механизму:
$А) радикального присоединения;
$В) радикального замещения;
$C) электрофильного замещения:
$D) нуклеофильного замещения;
$Е) нуклеофильного присоединения;
Вариант-28.
Некоторое вещество, молекула которого содержит 8 атомов углерода, реагирует с перманганатом калия и с хлором, но не реагирует с
хлороводородом, укажите это вещество:
$А) Октан;
$В) Стирол;
$С) этилбензол;
$D) этилциклогексан;
$Е) диметилциклогексан;
Вариант-29.
Напишите схему реакции нитрования бензойной кислоты. Укажите тип реакции:
$А) нуклеофильное замещение;
$В) нуклеофильное присоединение;
$С) нуклеофильного присоединения;
$D) электрофильное замещение;
$Е) электрофильное присоединение;
Вариант-30.
Напишите уравнение реакции бензола с одним молем серной кислотой. Укажите тип реакции и число атомов кислорода в молекуле
органического продукта реакции:
$A) замещения, 4;
$В) замещения, 3;
$С) присоединения, 4;
$D) присоединения, 3;
$Е) нет правильного ответа;
Вариант-31.
Напишите структурные формулы нижеследующих соединений и назовите их по международной номенклатуре изопропиловый спирт,
изобутиловый спирт:
$А) пропанол-1, бутанол-1;
$В) пропанол-2, 2-метилпропанол-1;
$С) пропанол-2, бутанол-2;
$D) пропанол-1, бутанол-2;
$Е) этанол, пропанол-1;
Вариант-32.
```

Этиленгликоль-:

```
$А) ближайший гомолог глицерина;
$В) двухатомный спирт;
$С) предельный одноатомный спирт;
$D) простейший фенол;
$Е) предельный трехатомный спирт;
Вариант-33.
Какое из перечисленных веществ является гомологом 2-метилбутанола-1:
$А) Этиленгликоль;
$В) глицерин;
$С) метилбутандиол-1,2;
$D) ди метилбутанол-2;
$Е) бутанол-1;
Вариант-34.
Какой основной способ получения этанола в промышленности:
$А) гидролиз углеводов;
$В) гидратация этилена;
$С) окисление этана;
$D) перегонка спиртных напитков;
$Е) горения алкилов;
Вариант-35.
Какой спирт не может быть получен гидратацией алкена:
$A) CH2-CH2-OH
$B) CH3-CH(OH)CH3
$C) (CH3)3COH .
$D) ((CH3)3C)3COH .
$E) CH2-CH2-CH2-OH.
Вариант-36.
Назовите промежуточное вещество X в двухстадийном синтезе пропанола-2 по схеме:
пропанол-1 \to X \to пропанол-2:
$А) 1-хлорпропан;
$В) пропан;
$С) пропен;
$D) этилен;
$Е) пропин;
Вариант-37.
Как называется реакция получения этилена из этилового спирта:
$А) внутримолеклярная гидратация;
$В) окисления;
$С) межмолекулярная дегидратация;
$D) гидролиз:
$Е) внутримолекулярная дегидратация;
Вариант-38.
Напишите уравнение реакции этилен + X \rightarrow этиленгликоль и назовите вещество X:
$А) водный раствор перманганата калия;
$В) водный раствор КОН;
$С) спиртовой раствор КОН;
$D) бромная вода;
$Е) вода;
Вариант-39.
Спирты реагируют с ...., а фенолы- нет:
$А) натрием;
$В) гидроксидом натрия;
$С) соляной кислотой;
$D) бромной водой;
$E) Cu(OH)2:
Вариант-40.
Фенолы реагируют с ..., а спирты –нет:
$А) натрием;
$В) гидроксидом натрия;
$С) соляной кислотой;
$D) бромная вода;
SE) Cu(OH):
Вариант-41.
```

```
Напишите структурную формулу пропанона-2 и укажите число атомов водорода в его молекуле:
$A) 3;
$B) 5;
$C) 6;
$D) 8:
$E) 7:
Вариант-42.
Дано вещество CH<sub>2</sub>-CH<sub>2</sub>-CO-CH<sub>3</sub>, назовите его по международной номенклатуре:
$А) пропанон;
$В) бутанон-2;
$С) метилпропанон;
$D) бутанол-1;
$Е) бутанол-2;
Вариант-43.
Какое вещество получится при окислении этанола оксидом меди (II):
$А) этилен;
$В) этан;
$С) уксусная кислота;
$D) уксусный альдегид;
$Е) уксусный ангидрид;
Вариант-44.
Какая реакция протекает при нагревании уксусного альдегида с водным раствором гидроксида натрия:
$А) нейтрализация;
$В) этерификация;
$С) альдольное присоединение;
$D) дисмутация;
$Е) Каницаро;
Вариант-45.
Какие альдегиды можно получить по реакции Кучерова из алкинов:
$А) только НСНО;
$B) только CH3-CHO:
$C) C4H2CHO:
$D) любой альдегид, кроме НСНО;
SE) CaHaCHaCHO
Вариант-46.
Сколько моль спирта используется в схеме образования полуацеталя из альдегида:
$A) 0,5;
$B) 1;
$C) 2;
$D) 3;
$E) 4;
Вариант-47.
В какой среде протекает реакция альдольной конденсации пропионового альдегида:
$А) кислая;
$В) нейтральная;
$С) щелочная;
$D) спиртовая;
$Е) водная;
Вариант-48.
Напишите реакцию уксусного альдегида с метиловым спиртом и укажите тип реакции:
$А) альдольное присоединение;
$В) дисмутация;
$С) нуклеофильное присоединение;
$D) этерификация;
$Е) иодоформная;
Вариант-49.
К какому классу относится продукт реакции между ацетоном и водородом:
$А) фенол;
$В) первичный спирт;
$С) кислота;
$D) вторичный спирт;
$Е) алкан;
Какое вещество образуется при нагревании уксусного альдегида с оксидом серебра:
```

```
$А) этиловый спирт;
$В) уксусный ангидрид;
$С) хлор ангидрид;
$D) фенол;
$Е) уксусная кислота;
Вариант-51.
Напишите структурную формулу 2-метил- 2-бромбутановой кислоты и укажите число атомов водорода в её молекуле:
$B) 7;
$C) 8;
$D) 9;
$E) 1;
Вариант-52.
Карбоксильная группа-.....электронов в..... кислотах:
$А) донор, ароматических;
$В) акцептор, ароматических;
$С) донор, алифатических;
$D) донор, непредельных;
$Е) акцептор, непредельных;
Вариант-53.
Какая простейшая карбоновая кислота имеет изомер:
$А) муравьиная;
$В) уксусная;
$С) масляная;
$D) пропионовая;
$Е) спирт;
Вариант-54.
Напишите уравнение реакции получения пропионовой кислоты из соответствующего ангидрида и укажите коэффициент перед кислотой:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
Вариант-55.
Какая схема включает только реакции окисления:
    CO2> RCOOH> RCH2OH> RCH2
    RCH2OH> RCHO> RCOOH> CO2
$C) R₂CHOH> R₂CO> R₂CHOH> CO₂
$D) H2CO> HCOOH> CH2OH> CO2
$E) CH:OH > H:CO > HCOOH > CO2
Вариант-56.
Какое вещество способно к образованию водородных связей:
$A) CH3COOCH3 :
$B) HCOOC:H:
$C) C:H:COOH
$D) CH:OCH:CHO
SE) CH3COOC1 :
Вариант-57.
Определите промежуточное вещество X в схеме синтеза малоновой кислоты,
CH:=CH-COOH > X + Y > HOOC-CH:-COOH .
$A) HOCH:CH:COOH .
$B) CH<sub>2</sub>CH(OH)COOH.
    CH3-CH(OH)COOH
$C)
$D) H:O;
$E) C:H:OH.
Гликоль был обработан PCI<sub>5</sub>, а затем KCN, при этом получен динитрил. После гидролиза
динитрила образовалась глутаровая кислота. Какой гликоль был взят в качестве исходного вещества) Напишите уравнения реакций:
$А) этанол-1,2;
$В) этандиол-1,1;
$C) пропандиол-1,3;
```

```
$D) пропандиол -1, 2;
$Е) бутандиол-1, 4;
Вариант-59.
Расположите в ряд по увеличению кислотных свойств следующие кислоты муравьиная кислота; уксусная кислота; пропионовая кислота:
$А) Муравьиная, уксусная, пропионовая;
$В) Муравьиная, пропионовая, уксусная);
$С) Пропионовая, уксусная, муравьиная;
$D) Уксусная, пропионовая, муравьиная;
$Е) ответ A, B, C, D;
Вариант-60.
Укажите вещество, которое образуется при взаимодействии уксусной кислоты с избытком хлора:
$А) Хлоруксусная кислота;
$В) Хлорангидрид уксусной кислоты;
$С) Дихлоруксусная кислота;
$D) Трихлоруксусная кислота;
$Е) уксусный ангидрид;
Вариант-61.
Напишите структурную формулу пальмитодилинолеата и укажите число атомов водорода в его молекуле:
$A) 98;
$B) 105;
$C) 110;
$D) 6;
$E) 56;
Вариант-62.
Напишите формулу тристеарата и укажите число атомов углерода в его молекуле:
$A) 3;
$B) 6;
$C) 57;
$D) 59;
$E) 100;
Вариант- 63.
Укажите формулу α-глицерофосфата:
$A) CHa(OH)-CH(OH)-CHa(OH)
$B) H:PO4;
    CH2(OH)-CH(OH)-CH2(OPO2H2)
$D) CH<sub>2</sub>(OR)-CH<sub>2</sub>(OR)-CH<sub>2</sub>(OPO<sub>2</sub>H<sub>2</sub>)
SE) CH2(OH)-CH2-CH2(OPO3H2).
Вариант- 64.
Напишите реакции глицерина с 2 молями стеариновой и 1 молем олеиновой кислоты, назовите
продукт:
$А) диолеостеарат;
$В) олеодистеарат;
$С) тристеарат;
$D) триолеат;
$Е) диолеодистеарат;
Вариант-65.
Напишите уравнение реакции глицерина с 3 молями линоленовой кислоты и назовите продукт
реакции:
$А) глицерин;
$В) трилинолеат;
$С) дилинолеат;
$D) триглицерат;
$Е) линолеат;
Вариант-66.
Какая кислота не входит в состав природных жиров:
$A) C15H34O2;
$B) C17H34O2 .
$C) C15H32O2
$D) C16H 52O2.
$E) C:H:OH:
Вариант-67.
Какое средство может входить в состав моющих средств:
```

\$А) тристеарат;

```
$В) стеарат натрия;
$С) олеинат калция;
$D) пальмитат магния;
$Е) стеарат кальция;
Вариант-68.
Напишите схему реакции получения триглицерида-олеодистеарата и укажите коэффициент перед непредельной кислотой:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
Вариант-69.
Из какого спирта образуются природные жиры:
$А) одноатомный спирт;
$В) двухатомный спирт;
$С) третичный спирт;
$D) трехатомный спирт;
$Е) альдегиды;
Вариант-70.
Какая реакция используется для доказательства наличия остатков непредельных кислот в молекуле жиров:
$А) присоединение брома;
$В) серебряное зеркало;
$С) гидратация;
$D) этерификация;
$Е) нуклеофильный;
Вариант-71.
Напишите структурную формулу глиоксиловой кислоты и укажите число атомов кислорода в её молекуле:
$A) 1;
$B) 2;
$C) 3;
$D) 4:
$E) 5;
Вариант-72.
Напишите структурную формулу α-гидрокси-β-хлорпропионовой кислоты и укажите число атомов водорода в её молекуле:
$A) 2;
$B) 4;
$C) 3;
$D) 5;
$E) 1;
Вариант-73.
Напишите схему реакции и укажите промежуточное вещество X.
Уксусный альдегид—Х—молочная кислота:
$А) аминоуксусная кислота;
$В) нитрилуксусный альдегид;
$С) пропаналь;
$D) 2-гидроксипропаннитрил;
$Е) пропанон;
Вариант-74.
Напишите схему реакции и укажите вещество X.молочная кислота + X \to пировиноградная кислота:
$A) [H];
$B) [O];
$C) KCN;
$D) H:O:
$E) HCN;
Вариант-75.
Напишите уравнение реакции происходящей при нагревании β-гидроксипропионовой кислоты. Назовите продукт реакции:
$А) непредельная кислота;
$В) у-лактон;
$C) лактид;
$D) дикетопиперазин;
$Е) лактам;
Вариант-76.
Напишите уравнение реакции молочной кислоты с избытком натрия и укажите число атомов водорода в молекуле полученной соли:
$A) 1;
$B) 2;
```

```
$C) 3;
$D) 4;
$E) 5;
Вариант-77.
Какой атом углерода называется ассиметрическим:
$A) <sup>5</sup>Р<sup>2</sup>-гибридизованный атом углерода;
$В) ѕр-гибридизованный атом углерода;
$С) углерод, связанный с 4 различными группами атомов;
$D) углерод, связанный с 4 атомами водорода;
$Е) ответ A, B, C, D;
Вариант-78.
Какие вещества называются оптическими изомерами:
$А) имеют одинаковый состав, но различные структуры;
$B) имеют одинаковый состав, но атомы находятся в цис- и транс- положениях;
$С) имеют одинаковый состав, но различные конформации;
$D) имеют одинаковый состав, но по разному вращают плоскость поляризованного света;
$Е) ответ A, B, C, D;
Вариант-79.
Напишите уравнение реакции пировиноградной кислоты с НСN и укажите число атомов углерода в молекуле продукта реакции:
$A) 2;
$B) 4;
$C) 6;
$D) 8;
$E) 1;
Вариант-80.
Напишите реакцию пировиноградной кислоты с этиловым спиртом. Укажите название
органического продукта реакции:
$А) ацетоуксусный эфир;
$В) этилацетат;
$С) этилпропионат;
$D) этиловый эфир пировиноградной кислоты;
$Е) этиловый эфир пропионовой кислоты;
Вариант-81.
Напишите структурную формулу диэтиламина и укажите число первичных атомов углерода в его молекуле:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
Вариант-82.
              CH2-CH2-NH-CH(CH2)2) . Укажите название этого амина) :
Дано вещество
$А) триметиламин;
$В) диэтиламин;
$С) этилизопропиламин;
$D) этил-2-метилэтиламин;
$Е) этилпропиламин;
Вариант-83.
Среди перечисленных соединений выберите изомер диэтиламина:
$А) 2-аминопропан;
$В) 2-амино-2-метилпропанол- 1;
$С) диметилэтиламин;
$D) 2-метиланилин;
$Е) этилпропиламин;
Вариант-84.
Напишите структурную формулу этаноламина и укажите число атомов водорода:
$A) 3;
$B) 5;
$C) 7;
$D) 9;
$E) 10;
Вариант-85.
Напишите уравнение реакции этилбромида с одним молем аммиака и укажите число атомов водорода в молекуле полученного
соединения:
```

\$A) 4;

```
$B) 5;
$C) 6;
$D) 8;
$E) 9;
Вариант-86.
Какой амин получается при полном восстановлении 2-нитробутана:
$А) бутенамин;
$В) втор-бутиламин;
$С) диэтиламин;
$D) изобутиламин;
$Е) этилпропиламин;
Вариант-87.
Какая из нижеуказанных реакций используется для получения этиламина:
A) нитроэтан + водород;
$В) этан + гидразин;
$С) этилен + аммиак;
$D) пропиламин + водород;
$E) этил+пропиламин;
Вариант-88.
Основные свойства первичных аминов в газовой фазе описываются уравнением:
$A) RNH:=RNH+H.
$B) RNH++H+> RNH++
$C) RNH :+H :O> RNH :++OH-
$D) RNH == R++NH3.
$E) RNH2+H2O> RNH2+;
Вариант-89.
Предельные амины - более сильные основания, чем аммиак, благодаря:
$А) неподеленной электронной паре атома азота;
$В) слабым кислотным свойством атомов водорода;
$С) электронно-донорным свойством предельных углеводородных радикалов;
$D) полярности связи C-N;
$Е) ответ A, B, C, D;
Вариант-90.
С помощью какого вещества можно получить н-бутиламин из бутилбромида:
$А) метанол;
$В) метиламин;
$С) аммиак;
$D) бутаналь;
$Е) метан;
Вариант-91.
По функциональным группам моносахариды классифицируются на:
$А) альдозы и кетозы;
$В) моносахариды и дисахариды;
$С) глюкозы и фруктозы;
$D) пентозы и гексозы;
$Е) моносахариды и полисахариды;
Вариант-92.
Какая функциональная группа не входит в состав углеводов:
$А) гидроксильная;
$В) карбонильная;
$С) альдегидная;
$D) сложноэфирная;
$Е) кетонная;
Вариант-93.
Сколько оптических изомеров существует у альдогексоз:
$A) 4;
$B) 8;
$C) 16;
$D) 32;
$E) 36;
Вариант-94.
Глюкоза и фруктоза это -:
$А) геометрические изомеры;
$В) изомеры функциональных групп;
```

```
$С) олигосахариды;
$D) гомологи;
$Е) ответ A, B, C, D;
Вариант-95.
Как называют два оптических изомера по отношению друг к другу, которые являются антиподами:
$А) эпимеры:
$В) энантиомеры;
$С) диастереомеры;
$D) цис- и транс- изомеры;
$Е) ответ A, B, C, D;
Вариант-96.
Оптическая изомерия углеводов связана с существованием в их молекуле:
$А) нескольких гидроксильных групп;
$В) ассиметрических атомов углерода;
$С) карбонильной группы;
$D) кратных связей;
$Е) ответ A, B, C, D;
Вариант-97.
Какое из веществ не реагирует с глюкозой:
$А) бромная вода;
$B) Cu(OH)::
$C) CaCO<sub>3</sub> ...
$D) (CH<sub>2</sub>CO)<sub>2</sub>O .
$E) CH<sub>3</sub>J;
Вариант-98.
Определите промежуточное вещество X в следующей схеме превращений.
C6H12O6> X> CH5-C(O)-COOH .
$А) двуокись углерода;
$В) раствор перманганата калия;
$С) этиловый спирт;
$D) молочная кислота;
$E) [Ag(NH<sub>3</sub>) <sub>2</sub>]OH;
Вариант-99.
Образование полисахаридов из моносахаридов -это реакция:
$А) полимеризации;
$В) поликонденсации;
$С) этерификации;
$D) гидролиза;
$Е) окислении;
Вариант-100.
Напишите уравнение реакции получения глюкозы в процессе фотосинтеза и укажите
коэффициент перед водой:
$A) 2;
$B) 3;
$C) 4;
$D) 6:
$E) 7;
Вариант-101.
Напишите уравнение окисления Д-глюкозы амиачным раствором оксида серебра и укажите число атомов кислорода в молекуле
органического продукта реакции:
$A) 3;
$B) 6;
$C) 7;
$D) 12;
$E) 15;
Вариант-102.
Какое из нижеприведенных веществ используется для качественного обнаружения нескольких гидроксильных групп в молекуле Д-рибозы:
$А) оксид серебра;
$В) гидроксид меди (II);
$С) азотная кислота;
$D) хлорид железа (II);
$E) [Ag(NH<sub>5</sub>)<sub>2</sub>]OH .
Вариант-103.
```

```
С помощью какого вещества можно качественно различить D-глюкозу и D-сорбит:
A Сu(OH) 2 (комн) температура);
$В) Ад2О (аммиачный раствор);
$С) азотная кислота;
$D) хлорид железа (III);
$E) H<sub>2</sub>O:
Вариант-104.
Какие из нижеприведенных дисахаридов являются восстанавливающими:
$А) сахароза и глюкоза;
$В) сахароза и мальтоза;
$С) целлобиоза и лактоза;
$D) целлобиоза и сахароза;
$Е) сахароза и лактоза;
Вариант-105.
Какой дисахарид относится к невосстанавливающим:
$А) лактоза:
$В) целлобиоза;
$С) сахароза;
$D) мальтоза;
$Е) гликоген;
Вариант-106.
Какой вид связи имеется между моносахаридными остатками в молекуле лактозы:
$А) α-1,4-гликозидная;
$В) β-1,6-гликозидная;
$C) α-1,6-гликозидная;
$D) β-1,4-гликозидная ;
$E) α-1,2-гликозидная;
Вариант-107.
Какой вид связи находится между моносахаридным остатками в молекуле мальтозы:
$А) α-1,4-гликозидная;
$B) β-1.4-гликозидная:
$C) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$E) α-1,2-гликозидная;
Вариант-108.
Напишите уравнение реакции целлобиозы с избытком йодистого метила и укажите коэффициент перед йодистым метилом:
$A) 2;
$B) 4;
$C) 8;
$D) 10;
$E) 12:
Вариант-109.
На мальтозу подействовали бромной водой. Назовите полученный органический продукт
реакции:
$А) глюкоза;
$В) галактоза;
$С) мальтобионовая кислота;
$D) глюконовая кислота;
$Е) гликоген;
Вариант-110.
На мальтозу подействовали гидроксидом меди без нагревания, как изменяется цвет раствора:
$А) голубой осадок превращается в красный осадок;
$В) голубой осадок растворяется с образованием синего раствора;
$С) голубой осадок не растворяется;
$D) голубой осадок превращается в белый осадок;
$Е) ответ A, B, C, D;
Вариант-111.
На мальтозу подействовали гидроксидом меди при нагревании. Как измениться цвет:
$А) голубой осадок превращается в красный осадок;
$В) голубой осадок растворяется с образованием синего раствора;
$С) голубой осадок не растворяется;
$D) голубой осадок превращается в белый осадок;
$Е) ответ A, B, C, D;
Вариант-112.
Напишите реакцию мальтозы с метанолом в присутствии HCl) Укажите коэффициент
```

```
перед метанолом:
$A) 1;
$B) 2;
$C) 5;
$D) 8:
$E) 10:
Вариант-113.
Напишите реакцию целлобиозы с избытком уксусного ангидрида и укажите коэффициент перед уксусным ангидридом:
$A) 1;
$B) 5;
$C) 6;
$D) 8;
$E) 10;
Вариант-114.
Напишите формулу сахарозы и укажите число гидроксильных групп в её молекуле:
$A) 4;
$B) 6;
$C) 8;
$D) 10;
$E) 12;
Вариант-115.
Сколько гидроксильных групп имеется в молекуле лактозы:
$A) 4;
$B) 5;
$C) 7;
$D) 8;
$E) 10;
Вариант-116.
С каким из перечисленных реактивов может реагировать сахароза:
$A) CH<sub>3</sub>OH+HCl;
$В) бензол;
$С) оксид серебра;
$D) уксусный ангидрид;
$E) Cu<sub>2</sub>O;
Вариант-117.
Как химическим путем отличить крахмал от целлюлозы:
$А) реакция с Н2;
$В) реакция с Ј2;
$С) реакция этерификации;
$D) гидролиз;
$Е) оксид серебра;
Вариант-118.
Какой углевод имеет линейное строение:
$А) целлюлоза;
$В) гликоген;
$С) амилопектин;
$D) крахмал;
$Е) гликоген;
Вариант-119.
Какой вид связи находится между моносахаридными остатками в молекуле целлюлозы:
$А) α-1,4-гликозидная;
$В) β-1,4-гликозидная;
$С) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$E) α-1,2-гликозидная;
Вариант-120.
Какой вид связи находится между моносахаридными остатками в молекуле амилозы:
$A) α-1,4-гликозидная;
$B) β-1,4-гликозидная;
$С) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$Е) α-1,2-гликозидная;
Вариант-121.
Определите вид гибридизации электронных облаков атомов углерода в алканах:
$A) sp-;
```

```
$B) -sp2;
$C) -sp3;
$D) s-s и p-p;
$E) sp5;
Вариант-122.
При опускании во что раскаленная окисленная медная проволока краснеет:
$А) Бензол;
$В) Толуол;
$С) Циклогексан;
$D) Этанол;
$Е) Гексан;
Вариант-123.
Какова геометрическая форма молекулы метана:
$А) Тетраэдрическая;
$В) Линейная;
$С) Объемная;
$D) Плоская;
$Е) Квадратная;
Вариант-124.
Что будет являться конечным продуктом гидролиза крахмала:
$А) Глюкоза;
$В) Сахароза;
$C) Этанол;
$D) Целлюлоза;
$Е) нет правильного ответа;
Вариант-125.
Что из перечисленного является изомером:
$А) Формальдегид и муравьиная кислота;
$В) Пентан и диметилпропан;
$С) Этанол и уксусная кислота;
$D) Бензол и фенол;
$Е) Альдегид и спирт;
Вариант-126.
Что образуется при гидролизе сахарозы:
$А) Крахмал;
$В) Глюкоза и этанол;
$С) Глюкоза и фруктоза;
$D) Целлюлоза;
$Е) Лактоза;
Вариант-127. Что можно применить в качестве восстановителя:
$А) Фенол;
$В) Уксусную кислоту;
$С) Формальдегид;
$D) Нитробензол;
$Е) Марганцовка;
Вариант-128.
Определите общую формулу гомологического ряда аренов:
$A) CnH2n;
$B) CnH2n -2;
$C) CnH2n -6;
$D) CnH2n +2;
$E) CnH2n-5;
Вариант-129.
При горении метиламина образуются кроме углекислого газа?
$А) Азот и водород;
$В) Азот и вода;
$С) Аммиак и вода;
$D) Аммиак и водород;
$E) Аммиак и спирт;
Вариант-130.
Какая реакция даст нам каучук?
$А) Полимеризация;
$В) Поликонденсация;
$С) Этерификация;
```

\$D) Изомеризация;

```
$Е) Нейтрализақия;
Вариант-131.
Определите общую формулу гомологов ряда алкадиенов:
$A) CnH2n+2;
$B) CnH2n;
$C) CnH2n-2 +:
$D) CnHn-2;
$Е) Нет обшая формула;
Вариант-132.
Из чего сможет образоваться в результате одностадийного превращения бензол?
$А) Этилена;
$В) Бутадиена;
$С) Ацетилена;
$D) Метана;
$Е) Этана;
Вариант-133.
Чему равен коэффициент перед формулой кислорода в уравнении реакции горения этана?
$A) 9;
$B) 7;
$C) 5;
$D) 3;
$E) 2;
Вариант-134.
Что из перечисленного не подвержено гидролизу?
$А) Жир;
$В) мыла;
$С) Хлорид цинка;
$D) Этан;
$Е) Карбонат натрия;
Вариант-135.
Что будет являться природным сырьем для производства азотной кислоты?
$А) Нитрат натрия;
$В) Аммиак;
$С) Хлорид аммония;
$D) Воздух;
$Е) Фосфин;
Вариант-136.
При какой реакции получают каучуки?
$А) Гидрогенизации;
$В) полимеризации;
$С) изомеризации;
$D) поликонденсации;
$E) Дегидрогенизация;
Вариант-137.
Гидратацией какого вещества можно получить этаналь:
$А) Ацетилен;
$В) этилен;
$С) хлорэтан;
$D) метан;
$Е) бутан;
Вариант-138.
Ацетилен в лаборатории можно получить при взаимодействии:
$А) водорода с углеродом;
$В) карбида кальция с водой;
$С) карбида алюминия с водой;
$D) углерод и кислород;
$Е) из водорода;
Вариант-139.
Продуктом гидратации ацетилена является:
$А) муравьиный альдегид;
$В) муравьиная кислота;
$С) уксусный альдегид;
$D) метананаль;
$Е) спирт;
```

Вариант-140.

И ацетилен, и этилен при обычных условиях реагируют с:
\$A) хлорной водой;
\$В) оксидом натрия;
\$C) калием;
\$D) hatpuem;
\$E) водородом;
Вариант-141.
Какое из указанных веществ при взаимодействии с водой в присутствии солей ртути образует альдегид:
\$А) бутин-1;
\$В) пропин
\$C) этин;
\$D) фосфин;
\$E) цианид;
Вариант-142.
В реакцию полимеризации при определённых условиях может вступать:
\$А) Пропан;
\$B) Ацетилен;
\$C) бензол;
\$D) толуол;
\$E) ксилол;
Вариант-143.
При полном гидрировании ацетилена образуется:
\$A) Этанол;
\$В) Этен;
\$C) Этан;
\$D) Этанал;
\$E) Этин;
Вариант-144.
Как пропен, так и пропин:
\$A) обесцвечивает бромную воду;
\$В) не подвергается окислению;
\$С) не реагируют с водородом;
\$D) не окисляются;
\$E) не растворяются;
Вариант-145.
Реакция Вюрца:
\$A) реакция бромирования;
\$B) реакция взаимодействия моногалогенпроизводного с Na;
\$C) реакция нитрования алканов;
\$D) гидрирование;
\$E) окисление;
Вариант-146.
Что из предложенного не получают из метана:
\$A) уксусный альдегид;
\$В) воды;
\$С) топливо;
\$D) ацетилен;
\$E) водород;
Вариант-147.
Какое вещество образуется при взаимодействии циклопропана и бромводорода:
\$A) 2-бромпропен;
\$В) 1-бромпропан;
\$C) циклопропан бромид;
\$D) бутилен;
\$E) водород;
Вариант-148.
В каком агрегатном состоянии при нормальных условиях находится гексан:
\$А) твердое вещество;
\$В) эмульсия;
\$C) ra3;
\$D) жидкость;
\$E) золь;
Вариант-149.
Чем окисляются алканы во время процесса горения:
\$A) кислородом воздуха;

- \$В) перманганатом калия;
- \$С) водородом воздуха;
- \$D) пероксидом;
- \$Е) азотом воздуха;

Вариант-150. Составьте молекулярную формулу алкана, в молекуле которого содержится 26 атомов водорода:

- \$A) C₂₆H₁₂;
- \$B) C₁₂H₂₆;
- \$C) C₁₂H₂₆;
- \$D) C3H5;
- \$E) C₂₆H₅₂;

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ТЕМАТИКА ДОКЛАДОВ (РЕФЕРАТОВ)

по дисциплине Органической химии

- 1. Современные тенденции направления и перспективы развития науки
- 2. Основные принципы международной номенклатуры
- 3. Индукционные и мезомерные эффекты
- 4. Значение алканов и их применение. Циклоалканы
- 5. Основные химические свойства ненасыщенных углеводородов
- 6. Натуральные и синтетические каучуки. Применение
- 7. Природные полимеры. Изопреновое звено в природных соединениях.
- 8. Ориентация в дизамещенных бензола
- 9. Многоатомные спирты
- 10. Тиоэфиры. Способы получения.
- 11. Отдельные представители альдегиды и их применение.
- 12. Ароматические альдегиды и кетоны
- 13. Отдельные представители высшие жирные кислоты
- 14. Сложные и простые эфиры
- 15. Сложные липиды, их распространение и значение
- 16. Химические свойства и их зависимость от взаимного расположения гидроксила и карбоксильной группы

Тема докладов

- 1. Глюкоза и фруктоза; сравнение строения свойств
- 2. Отдельные представители ди- и полисахариды
- 3. Понятие о секстетных перегруппировках.
- 4. Образование комплексов с переносом заряда.
- 5. Перегруппировки Гофмана и Курциуса.
- 6. Реакции электрофильного замещения в бензольном ядре ароматических аминов, защита аминогруппы.
- 7. Реакции диазотирования первичных ароматических аминов.
- 8. Кислотно-основные равновесия с участием катиона арендиазония.
- 9. Азосочетание как реакция электрофильного замещения. Азо- и диазосоставляющие, условие сочетания с аминами и фенолами. Азокрасители.
- 10. Кислотно-основные свойства, амфотерность аминокислот.
- 11. Заменимые и незаменимые аминокислоты.
- 12. Понятие о ферментах и ферментативном катализе
- 13. Молекулярные π -орбитали пятичленных ароматических гетероциклов с одним гетероатомом
- 14. Реакции, характеризующие фуран как диен.
- 15. Нуклеофильное замещение атомов водорода в пиридине и хинолине в реакциях с амидом натрия (Чичибабин) и фениллитием
- 16. Методы исследования органических соединений: электронная, ИК, ЯМР-спектроскопия и масс-спектрометрия.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: работа написана грамотным научным языком, имеет чёткую структуру и логику изложения, обозначена проблема и обоснована ее актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция, сформулированы выводы, тема раскрыта полностью, выдержан объем, точка зрения обучающегося обоснованна, в работе присутствуют ссылки на источники и литературу. Обучающийся в работе выдвигает новые идеи и трактовки, демонстрирует способность анализировать материал.

Оценка «хорошо» выставляется обучающемуся, если: работа студента написана грамотным научным языком, имеет чёткую структуру и логику изложения, точка зрения студента обоснованна, в работе присутствуют ссылки на источники и литературу. Среди недочетов могут быть: неточности в изложении материала; отсутствие логической последовательности в суждениях; не выдержан объем реферата; имеются упущения в оформлении.

Оценка «удовлетворительно» выставляется обучающемуся, если он выполнил задание, однако тему осветил лишь частично, допустил фактические ошибки в содержании реферата, не продемонстрировал способность к научному анализу, не высказывал в работе своего мнения, допустил ошибки в логическом обосновании своего ответа.

Оценка «неудовлетворительно» выставляется обучающемуся, если: тема реферата не раскрыта, обнаруживается существенное непонимание проблемы, задание выполнено формально, обучающийся ответил на заданный вопрос, но при этом не ссылался на источники и литературу, не трактовал их, не высказывал своего мнения, не проявил способность к анализу, то есть в целом цель реферата не достигнута.

Оценка не выставляется обучающемуся, если реферат им не представлен.

Составитель: Алихонова С. Д.