МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Интегральные уравнения»

Направление подготовки – 01.03.01 «Математика» Профиль подготовки – «Общая математика» Форма подготовки – очная Уровень подготовки – бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ о т 10.01.2018г. № 8

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению;
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от « 28 » августа 2024 г.

Рабочая программа утверждена УМС <u>Естественнонаучного факультета</u>, протокол № 1 от « 29×800 м 200 м

Рабочая программа утверждена Ученым советом <u>Естественнонаучного</u> факультета, протокол № 1 от « 30 » 08. 2024г.

duch_

Заведующий кафедрой к.ф-м.н., доцент

Гулбоев Б. Дж.

Зам.председателя УМС факультета

Халимов И. И.

Разработчик к.ф-м.н., доцент

Гаибов Д.С.

Разработчик от организации:

Каримов О.Х

Расписание занятий дисциплины

Таблица 1

Ф.И.О.	Аудиторные занятия		Приём СРС	Место работы
преподавателя	лекция	Практические		преподавателя
		занятия (КСР, лаб.)		
Гаибов Д.С.				РТСУ, второй корпус, 203 каб. кафедра математики и физики

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Изучение основных свойств линейных интегральных уравнений Фредгольма и Вольтерра и некоторых, связанных с ними вопросов, таких как задача Штурма-Лиувилля, основы вариационного исчисления, основы методов регуляризации на примере интегрального уравнения Фредгольма 1-го рода.

1.2. Задачи изучения дисциплины:

В результате освоения дисциплины обучающийся должен знать свойства интегральных уравнений Фредгольма и Вольтерра 2-го рода и методы вариационного исчисления; уметь применять знания свойств интегральных уравнений и вариационных методов в других областях математики и в теоретической физике.

1.3. Требования к результатам освоения дисциплины:

В результате изучения данной дисциплины у обучающихся формируются следующие компетенции (элементы компетенций):

Коды ком-	Содержание	Перечень планируемых результатов обучения по	Вид оценоч-
петенции	компетенций	дисциплине	ного средства
ОПК-1	Способен	ИОПК-1.1. Применяет фундаментальные знания,	Разно
	применять	полученные в области математических и (или)	уровневые
	фундаментальн	естественных наук	задачи
	ые знания,	ИОПК-1.2 Использует фундаментальные знания,	
	полученные в	полученные в области математических и (или)	Решение
	области	естественных наук в профессиональной	задач
	математически	деятельности	
	х и (или)	ИОПК -1.3 Обладает необходимыми знаниями для	
	естественных	исследования математических и их компонент	тест
	наук, и		
	использовать		
	ИХ В		
	профессиональ		
	ный		
	деятельности		
ОПК-2	Способен	ИОПК-2.1 Умение применять известные	Разно
	разрабатывать,	математические методы решения поставленных	уровневые
	анализировать	задач, адаптировать и модифицировать их для	задачи
	и внедрять	конкретных ситуаций с учетом особенностей	
	новые	применения в естествознании, технике, экономике,	

	математически	и управлении;	
	е модели в	ИОПК-2.2 Способствовать разрабатывать новые	Решение
	современных	методы решения с ориентацией на повышение	задач
	естествознании	эффективности и качества принимаемых решений;	зада 1
	, техники,	ИОПК-2.3 Владеть созданием математические	
	экономики и	модели, выбирать методы для их расчёта,	тест
		-	1001
ПК-4	управлении Способен	оценивать вычислительную сложность. ИПК-4.1. Анализирует предлагаемое	Danze
11K-4		13 1 / 1	Разно
	формировать	обучающимся рассуждение с результатом:	уровневые
	способность к	подтверждает его правильность или находит	задачи
	логическому	ошибки и анализирует причины их возникновения;	
	рассуждению,	помогает обучающимся в самостоятельной	
	убеждению,	локализации	
	математическо	ошибки, ее исправлении; оказание помощи в	
	му	улучшении	
	доказательству	рассуждения;	
	И	ИПК-4.2 Формирует способности к логическому	
	подтверждени	рассуждению и коммуникации,	Решение
	ю его	установки на использование этой способности, на	задач
	правильности	ее ценность.	
		ИПК-4.3 Формирует у обучающихся убеждение	
		в абсолютности математической истины и	
		математического доказательства, предотвращать	тест
		формирование модели поверхностной имитации	
		действий, ведущих к успеху, без ясного	
		понимания смысла; поощрять выбор различных	
		путей в решении поставленной задачи	
ПК-5	Способен	ИПК-5.1 Организует самостоятельную	Разно
	организовать	деятельность обучающихся, в том числе	уровневые
	исследования в	исследовательскую;	задачи
	области	ИПК-5.2 Развивает инициативы обучающихся по	
	математики	использованию математики и научной	Решение
		исследование;	задач
		ИПК-5.3 Владеет основными положениями	
		классических разделов математической науки,	
		базовыми идеями и методами	тест
		математики, системой основных математических	
		структур и аксиоматическим методом.	
	1	17 71	<u> </u>

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Данная дисциплина относится к обязательной части Блока Дисциплины учебного плана направления подготовки — 01.03.01 «Математика», профиль подготовки — «Общая математика» (Б1.О.22). Дисциплина «Интегральные уравнения» изучается на 7-ом семестре.

При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплинам 1-5, указанных в Таблице 2. Таблица 2.

No	Название дисциплины	Семестр	Место дисциплины в структуре ОПОП
1.	Математический анализ	1-4	Б1.В.11
2.	Аналитическая геометрия	1-2	Б1.О.14
3.	Дифференциальные уравнения	3-4	Б1.О.16

4.	Дифференциальная геометрия и топология	4-5	Б1.О.18
5.	Дискретная математика	5	Б1.В.05

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем дисциплины «Интегральные уравнения» составляет 4 зачетные единицы, всего 144 часов, из которых: лекции — 32 часов, практические занятия — 16 часов, КСР — 16 часов, самостоятельная работа —25ч, +54ч контрол часа, всего часов аудиторной нагрузки — 72 часов. Экзамен — 7-ой семестр

3.1. Структура и содержание теоретической части курса

Тема 1. Классификация интегральных уравнений. Метод последовательных приближений. Понятие о резольвенте – 6 часов

(Основные понятия. Классификация линейных интегральных уравнений. Интегральное уравнение Фредгольма 2-го рода. Интегральное уравнение Фредгольма 1-го рода.)

Тема 2. Задача Коши. Интегральные уравнения Вольтера 2 рода – 4 часа

(Уравнения Вольтерры 2-го рода, уравнения типа свертки. Резольвенты. Метод последовательных приближений. Задача Коши́. Примеры.)

Тема 3. Теоремы Фредгольма. Резольвента Фредгольма — 4 часа (Однородные уравнения. Неоднородные уравнения. Определитель Фредгольма. Основные результаты. Резольвента интегрального уравнения)

Тема 4. Теоремы Фредгольма для общего случая уравнения Фредгольма — 4 часа

(Уравнения с вырожденным ядром. Четыре теоремы Фредгольма. Альтернатива Фредгольма).

Тема 5. Частный случай уравнения Фредгольма. Сходимость рядов Фредгольма и переход к пределу — 4 часа

(Интегральное уравнение Фредгольма второго рода. Ряд Неймона. Интегральное уравнение Фредгольма с ядром. Ряд примеров.)

Тема 6. Интегральные преобразования и интегральные уравнения – 4 часа.

(Метод интегральные преобразования, Таблица преобразований (одномерный случай. Оригинал и изображение).

Тема 7. Интегральные уравнения, приводящиеся к симметричным ядрам — 4 часа

(Процесс ортогонализации, формулы Шмидта для решения интегральных уравнений с симметричным ядром.)

Тема 8. Интегральные уравнения 1-го рода. Операторные уравнения — 2 часа

(Операторные уравнения 1-го рода, решение задач поставленных корректно по Тихонову. Приближенные методы решения операторных уравнений I рода. Общая постановка задачи. Понятие корректности по Тихонову.)

3.2. Структура и содержание практической части курса

- Тема 1. Метрические пространства. Полные пространства. Принцип сжатых отображений. Применение принципа сжатых отображений к интегральным уравнениям. 2часа
- Тема 2. Задача Абеля. Интегральные уравнения Вольтера 1 рода. Регулярное ядро. Общий случай уравнения Фредгольма. Применение приближенных формулы интегрирования. 2 часа
- Тема 3. Линейные нормированные пространства. Линейные операторы.Норма оператора. Пространство операторов. Обратные операторы. 2 часа
 - Тема 4. Приближение к линейным интегральным уравнениям. 2 часа
- Тема 5. Метод итераций. Приложение метода итераций к уравнениям Фредгольма. Интегрированные ядра. Резольвента. 2 часа
- Тема 6. Теоремы Фредгольма (1-ая, 2-ая и 3-я теоремы). Вид знаменателя резольвенты для уравнения Вольтера. Квази-регулярные интегральные уравнения. 2 часа
- Тема 7. Симметричные интегральные уравнения. Симметричные ядра. Основные теоремы о симметричных уравнениях. Симметричные операторы. Теорема Гильберта-Шмидта. Решение операторных уравнений. 2 часа
- Тема 8. Функция Грина. Сведение краевой задачи к интегральному уравнению. Решение симметричных интегральных уравнений. Разложение решения уравнений Фредгольма по фундаментальным функциям. 2 часа

Итого 16 ч

3.3. Структура и содержание КСР

Занятие 1. Уравнение типа Вольтера. Интегральные уравнения с вырожденным ядром. Теоремы Фредгольма 2 часа

Занятие 2. Уравнение Вольтера как частный случай уравнения Фредгольма.

Занятие 3. Уравнения со слабой особенностью. 2 часа

Занятие 4. Интегральные уравнения с ядром, имеющим слабую особенность.

Занятие 5. Характер решения интегрального уравнения. 2 часа

Занятие 6. Обоснование метода Фредгольма. Единственность решения. Вычисление коэффициентов рядов Фредгольма. Решение однородного уравнения. 2 часа

Занятие 7. Преобразование Фурье и Лапласа 2 часа

Занятие 8. Экстремальные свойства характеристических чисел и собственных функций 2 часа.

Итого 16 ч Таблица 3

				_	истици з	
Ī	№	Раздел	Виды учебной работы,	Лит-	Кол-во	
	п/п	т аздел дисциплины	включая самостоятель-	ра	баллов в	
	11/11	дисциплины	ную работу студентов и	Pа	неделю	

	трудоемкость (в часах)						
		Лек.	Пр.	КСР	CPC		
	VII c	еместр		1101	1 21 0		
1	Классификация интегральных	2	_		2	1 – 5	11,5
1	уравнений. Уравнение типа Вольтера.	_				1 5	11,5
	Интегральные уравнения с			2			
	вырожденным ядром. Теоремы			-			
	Фредгольма						
2	Метод последовательных	2			2	1 – 5	11,5
_	приближений. Метрические	_				1 5	11,5
	пространства. Полные пространства.		2				
	Принцип сжатых отображений.		_				
	Применение принципа сжатых						
	отображений к интегральным						
	уравнениям.						
3	Понятие о резольвенте. Уравнение	2	_		2	1 – 5	11,5
	Вольтера как частный случай	_		2	_		11,0
	уравнения Фредгольма.			_			
4	Задача Коши. Задача Абеля.	2			2	1 – 5	11,5
'	Интегральные уравнения Вольтера 1		2			1 2	11,0
	рода. Регулярное ядро. Общий случай		_				
	уравнения Фредгольма. Применение						
	приближенных формулы						
	интегрирования.						
5	Интегральные уравнения Вольтера 2-	2	_		2	1 – 5	11,5
3	го рода. Уравнения со слабой				2	1 3	11,5
	особенностью.			2			
6	Теоремы Фредгольма. Линейные	2			2	1 – 5	11,5
	нормированные пространства.		2			1 3	11,5
	Линейные операторы. Норма		_				
	оператора. Пространство операторов.						
	Обратные операторы.						
7	Резольвента Фредгольма.		_		2	1 – 5	11,5
,	Интегральные уравнения с ядром,	_		2		1 5	11,0
	имеющим слабую особенность.			_			
8	Теоремы Фредгольма для общего	2			2	1 – 5	11,5
	случая уравнения Фредгольма				_		11,5
	Приближение к линейным						
	интегральным уравнениям		2				
9	Теоремы Фредгольма для общего	2	_		1	1 – 5	11,5
	случая уравнения Фредгольма				•		11,5
	Характер решения интегрального						
	уравнения.			2			
10	Частный случай уравнения					1 – 5	11,5
10	Фредгольма. Метод итераций.	_			_		11,5
	Приложение метода итераций к		2				
	уравнениям Фредгольма.		_				
	Интегрированные ядра. Резольвента.						
11	Сходимость рядов Фредгольма и	2	_		2	1 – 5	11,5
1.1	переход к пределу. Обоснование				_		11,5
	метода Фредгольма. Единственность						
	решения. Вычисление			2			
	коэффициентов рядов Фредгольма.			_			
	пооффиционтов ридов Фродионыма.				1		

	Решение однородного уравнения.						
12	Интегральные преобразования и	2		_		1 – 5	11,5
12	интегральные уравнения. Теоремы	_			_		11,5
	Фредгольма (1-ая, 2-ая и 3-я						
	теоремы). Вид знаменателя ре-		2				
	зольвенты для уравнения Вольтера.		2				
	Квази-регулярные интегральные						
	уравнения.						
13	уравнения. Интегральные преобразования и	2			2	1-5	11,5
13		2	_		2	1-3	11,5
	интегральные уравнения.			2			
1.4	Преобразование Фурье и Лапласа	2				1 5	11 5
14	Интегральные уравнения,	2		_	_	1 - 5	11,5
	приводящиеся к симметричным						
	ядрам. Симметричные интегральные						
	уравнения. Симметричные ядра. Ос-		2				
	новные теоремы о симметричных						
	уравнениях. Симметричные опера-						
	торы. Теорема Гильберта-Шмидта.						
	Решение операторных уравнений.						
15	Интегральные уравнения,	2	_		2	1 - 5	11,5
	приводящиеся к симметричным						
	ядрам. Экстремальные свойства						
	характеристических чисел и			2			
	собственных функций						
16	Интегральные уравнения 1-го рода	2		_	_	1 - 5	11,5
	Функция Грина. Сведение краевой						
	задачи к интегральному уравнению.		2				
	Решение симметричных						
	интегральных уравнений. Разложение						
	решения уравнений Фредгольма по						
	фундаментальным функциям						
17	Операторные уравнения	2	_		2	1 - 5	11,5
	Общий анализ краевых задач для			_			
	обыкновенных линейных диффе-						
	ренциальных уравнений. Функция						
	Грина.						
18	Операторные уравнения	2		_	_	1 – 5	11,5
	Нелинейные интегральные		_		_		,
	уравнения. Теорема существования		_				
	абстрактной неявной функции.						
	Разветвление решений точки						
	бифуркации. Принцип неподвижной						
	точки.						
	Итого по семестру:	32	16	16	25		100

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль.

Итоговая форма контроля по дисциплине (экзамен) проводится в форме тестирования.

Таблица 4.

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практически х (семинарски х) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Всего
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр

$$MB = \left\lceil \frac{(P_1 + P_2)}{2} \right\rceil \cdot 0.49 + 3u \cdot 0.51$$

где ИБ — $итоговый балл, <math>P_I$ - итоги первого рейтинга, P_2 - итоги второго рейтинга, Эи — результаты итоговой формы контроля (экзамен).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и обучения. При обеспечивается составляющие ЭТОМ упорядочивание теоретических знаний, что, в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная работа планируется и организуется с целью углубления и расширения теоретических знаний, формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Интегральные уравнения» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- Активная работа на лекциях
- Активная работа на практических занятиях
- Контрольно-обучающие программы тестирования (КОПТ).
- Выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- Проработка лекционного материала,
- Подготовка к практическим занятиям,
- Подготовка к аудиторным контрольным работам,
- Выполнение ИДЗ,
- Подготовка к защите ИДЗ,
- Подготовка к зачету, экзамену.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Интегральные уравнения» включает в себя:

Таблица 6

	ı		T	таолица
№ п/п	Объем СРС в ч.	Тема СРС	Форма и вид СРС	Форма контроля
		І семестр	1	<u> </u>
1	2	Примеры физических задач, приводящих к интегральным уравнениям.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
2	2	Теорема о существования собственного значения и собственного вектора у симметричного вполне непрерывного оператора.	Письменное решение упражнений и задач. ИДЗ	Решение задач
3	2	Построение последовательности собственных значений и собственных векторов.	Письменное решение упражнений и задач. ИДЗ	тест
4	2	Существование собственных значений и собственных функций у интегрального оператора с симметричным ядром.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
5	2	Теорема Гильберта – Шмидта.	Письменное решение упражнений и задач. ИДЗ	Решение задач
6	2	Сведение задачи Штурма- Лиувилля к интегральному уравнению.	Письменное решение упражнений и задач. ИДЗ	тест
7	2	Свойства собственных значений и собственных функций задачи Штурма-Лиувилля. Теорема Стеклова.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
8	2	Уравнение Фредгольма с малым параметром.	Письменное решение упражнений и задач. ИДЗ	Решение задач
9	2	Уравнение Фредгольма с вырожденным и невырожденным ядром.	Письменное решение упражнений и задач. ИДЗ	тест
10	2	Теоремы Фредгольм.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
11	2	Метод последовательных приближении.	Письменное решение упражнений и задач. ИДЗ	Решение задач
12	1	Уравнение Фредгольма первого рода как пример некорректно по-	Письменное решение упражнений и задач. ИДЗ	тест

		ставленной задачи.					
13	_	Метод А.Н.Тихонова регуляризации решения уравнения Фредгольма первого рода.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи			
14	2	Преобразование Фурье.	Письменное решение упражнений и задач. ИДЗ	Решение задач			
15	_	Преобразование Лапласа.	Письменное решение упражнений и задач. ИДЗ	тест			
16	_	Метод Винера-Хопфа.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи			
Итог	Итого 25						

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Индивидуальные домашние задания (ИДЗ) по дисциплине «Интегральные уравнения» предназначены для студентов очной форм обучения нематематических факультетов, изучающих курс математики в соответствии с требованиями Федеральных государственных образовательных стандартов (ФГОС) по соответствующим направлениям подготовки. Работа содержит 12 индивидуальных домашних заданий (ИДЗ) по 30 вариантов в каждом, содержащих различные задания по дисциплине «Интегральные уравнения».

Целью настоящего комплекта ИДЗ является ознакомление студентов с основами линейной алгебры и началами математического анализа. При решении заданий по линейной алгебре учащиеся отработают навыки действий с определителями и матрицами, а также решения систем неоднородных и однородных линейных алгебраических уравнений. При решении заданий по математическому анализу студенты освоят технику вычисления пределов функции, получат навыки исследования функций одной переменной с применением аппарата дифференциального исчисления.

В целом, самостоятельное решение индивидуальных заданий позволяет углубить теоретические знания, отработать практические навыки решения задач по дисциплине. Во введении к работе приведены примеры решения типовых заданий по теме с необходимыми методическими указаниями.

Накопление большого количества оценок за ИДЗ, самостоятельные и контрольные работы в аудитории позволяет контролировать учебный процесс, управлять им, оценивать качество усвоения изучаемого материала.

4.3. Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет

методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета. Рисунки выполняются простыми карандашами. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Ф.И.О. студента, направление, курс и группа.

4.4. Критерии оценки выполнения самостоятельной работы по дисциплине «Интегральные уравнения»

Критериями оценок результатов внеаудиторной самостоятельной работы студента являются:

- -уровень освоения студентов учебного материала;
- -умения студента использовать теоретические знания при выполнении практических задач;
 - -сформированность обще учебных умений;
- -умения студента активно использовать электронные образовательные ресурсы, находить требующуюся информацию, изучать ее и применять на практике;
 - -обоснованность и четкость изложения ответа;
 - -оформление материала в соответствии с требованиями;
 - -умение ориентироваться в потоке информации, выделять главное;
- -умение четко сформулировать проблему, предложив ее решение, критически оценить решение и его последствия;
- -умение показать, проанализировать альтернативные возможности, варианты действий;
 - -умение сформировать свою позицию, оценку и аргументировать ее.

Критерии оценки самостоятельной работы студентов:

Оценка «5» ставится тогда, когда:

- -Студент свободно применяет знания на практике;
- -Не допускает ошибок в воспроизведении изученного материала;
- -Студент выделяет главные положения в изученном материале и не затрудняется в ответах на видоизмененные вопросы;
 - -Студент усваивает весь объем программного материала;
 - -Материал оформлен аккуратно в соответствии с требованиями;

Оценка «4» ставится тогда, когда:

- -Студент знает весь изученный материал;
- -Отвечает без особых затруднений на вопросы преподавателя;
- -Студент умеет применять полученные знания на практике;
- -В условных ответах не допускает серьезных ошибок, легко устраняет определенные неточности с помощью дополнительных вопросов преподавателя;
 - -Материал оформлен недостаточно аккуратно и в соответствии с требованиями;

Оценка «3» ставится тогда, когда:

- -Студент обнаруживает освоение основного материала, но испытывает затруднения при его самостоятельном воспроизведении и требует дополнительных дополняющих вопросов преподавателя;
- -Предпочитает отвечать на вопросы воспроизводящего характера и испытывает затруднения при ответах на воспроизводящие вопросы;

- -Материал оформлен не аккуратно или не в соответствии с требованиями; Оценка «2» ставится тогда, когда:
- -У студента имеются отдельные представления об изучаемом материале, но все, же большая часть не усвоена;
 - -Материал оформлен не в соответствии с требованиями.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Общая литература

- 1. *Полянин, А. Д.* Интегральные уравнения в 2 ч. Часть 1 : справочник для вузов / А. Д. Полянин, А. В. Манжиров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2021. 369 с.
- 2. *Полянин, А. Д.* Интегральные уравнения в 2 ч. Часть 2 : справочник для вузов / А. Д. Полянин, А. В. Манжиров. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2021. 238 с.
- 3. *Привалов*, *И. И*. Интегральные уравнения: учебник для вузов / И. И. Привалов. 4-е изд., стер. Москва: Издательство Юрайт, 2021. 253 с.
- 4. *Новак, Е. В.* Интегральное исчисление и дифференциальные уравнения: учебное пособие для вузов / Е. В. Новак, Т. В. Рязанова, И. В. Новак; под общей редакцией Т. В. Рязановой. Москва: Издательство Юрайт, 2020. 112 с.
- 5. *Боровских*, А. В. Дифференциальные уравнения в 2 ч. Часть 1 : учебник и практикум для вузов / А. В. Боровских, А. И. Перов. 3-е изд., перераб. и доп. Москва : Издательство Юрайт, 2020. 327 с.

5.2. Дополнительная литература

- 1. Петровский И.Г. Лекции по теории интегральных уравнений: учебник для студентов физико-математических спец. ун-тов. М.: ФИЗМАТЛИТ, 2009. 135 с.
- 2. Цлаф Л.Я. Вариационное исчисление и интегральные уравнения: Справочное руководство. СПб. Лань, 2005. 125 с.
- 3. Васильева, А. Интегральные уравнения / А. Васильева. М.: Физматлит, 2002. 160 с.
- 4. Смирнов Н. С. Введение в теорию нелинейных интегральных уравнений. M., 1936.
- 5. Краснов М. Л., Киселев А. И., Макаренко Г. И. Интегральные уравнения. Задачи и примеры с подробными решениями. 2003.

Интернет-ресурсы:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой – 1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету -5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Умение находить область определения и множество значений, нули функции, промежутки знакопостоянства и монотонности, точки экстремума — залог успешного решения задач единого экзамена. Можно выделить два обобщенных умения, связанных с исследованием свойств функций:

- 1) уметь «читать» график функции и переводить его свойства с графического языка на алгебраический и наоборот;
- 2) уметь работать с формулой, задающей функцию, обосновывая или проверяя наличие указанных свойств, что связывает задачи данного блока и с другими темами школьного курса (решение уравнений и неравенств, вычисление производных и др.)

В подготовке к решению подобных заданий поможет таблица, в которой перечислены свойства функций и дан их перевод на язык графиков.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса алгебры и начала анализа.

Например, при нахождении нулей функции нужно решать уравнения; при определении промежутков знакопостоянства функции - решать неравенства; при поиске области определения функции- находить области определения выражения.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

При выполнении домашних заданий необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Учебно-методический комплекс (УМК) призван помочь студенту понять специфику изучаемого материала, а в конечном итоге — максимально полно и качественно его освоить.

В первую очередь студент должен осознать предназначение комплекса: его структуру, цели и задачи. Для этого он знакомится с преамбулой, оглавлением УМК, говоря иначе, осуществляет первичное знакомство с ним.

Далее студент внимательно прочитывает и осмысливает тот раздел, задания которого ему необходимо выполнить.

Выполнение *всех* заданий, определяемых содержанием курса, предполагает работу с научными исследованиями (монографиями и статьями). Перед работой с научными источниками студенту следует обратиться к основной учебной литературе — учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам — справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их материалов позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение контрольной работы и т.д.).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «Интегральные уравнения» оснащены проектором для проведения презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации экзамен

Форма промежуточной аттестации (1 и 2 рубежный контроль) проводится путем выполнения самостоятельного задания.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица 7

Оценка по буквенной системе	Диапазон соответствующих наборных баллов	Численное выражение оценочного балла	Оценка по традиционной системе
A	10	95-100	Отлично
A	9	90-94	Оплично
B +	8	85-89	
В	7	80-84	Хорошо
В-	6	75-79	
C +	5	70-74	
C	4	65-69	
C-	3	60-64	Удовлетворительно
D+	2	55-59	у довлетворительно
D	1	50-54	
Fx	0	45-49	Политориотрофитони но
F	0	0-44	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC\ BO$.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.