МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Математический анализ»

Направление подготовки – 01.03.01 «Математика» Профиль подготовки – «Общая математика» Форма подготовки – очная Уровень подготовки – бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ о т 10.01.2018г. № 8

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению;
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № <u>1</u>от «28» <u>августа</u> 2024г.

Рабочая программа утверждена УМС Естественнонаучного факультета, протокол № <u>1</u> от «29» <u>августа</u> 2024г.

Рабочая программа утверждена Ученым советом Естественнонаучного факультета, протокол № <u>1</u> от «30» <u>08. 2024г.</u>

Заведующий кафедрой к.ф-м.н., доцент

Гулбоев Б.Дж.

He B Зам.председателя УМС факультета

Халимов И. И.

Разработчик: д.ф-м.н., профессор

Курбанов И.К.

Разработчик от организации:

Каримов О.Х

Расписание занятий дисциплины

Таблина 1

Ф.И.О.	Ауд	иторные занятия	Приём СРС	Место работы
преподавателя	лекция	Практические		преподавателя
		занятия (КСР, лаб.)		
Курбанов И.К				РТСУ, второй корпус, 203 каб. кафедра математики и физики

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Основной целью данной дисциплины является изучение основных разделов математического анализа в объеме, соответствующем требованиям, предъявляемым к общеэкономическим специальностям. В программу курса включены все основные фундаментальные разделы математического анализа.

Также, целями освоения дисциплины «Математический анализ» являются:

- дать студентам абстрактные понятия математического анализа, такие как функция, предел функции, бесконечно малая и бесконечно большая величина, производная и дифференциал функции, определенный интеграл, используемые для описания и моделирования различных по своей природе математических задач;
- дать представление о дифференциальных уравнениях и методах их решения;
- привить студентам навыки использования аналитических методов в практической деятельности.

1.2. Задачи изучения дисциплины:

Основной задачей данного курса является ознакомление студентов с основами математического аппарата, необходимого для решения теоретических и практических задач, развитие у обучаемого логического и алгоритмического мышления, выработка у студентов навыков к математическому исследованию прикладных вопросов математического характера.

Также, задачами освоения дисциплины «Математический анализ» являются:

- овладеть студентами основными математическими понятиями математического анализа;
- уметь решать типовые задачи, приобретение навыков работы со специальной математической литературой;
- уметь использовать математический аппарат для решения теоретических и прикладных задач.

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Таблица 2

Коды ком-	Содержание	Перечень планируемых результатов обучения	Вид оценоч-
петенции	компетенций	по дисциплине	ного средства
ПК-1	Способен	ИПК-1.1 Знает преподаваемый предмет в	Разно
	формировать	пределах требований ФГОС и ОПОП, его	уровневые
	основы	истории и место мировой культуре и науке;	задачи
	методики	ИПК-1,2 Осваивает и применять	
	преподавания	современные основы методики преподавания,	Решение задач
	математики в	современные основы методики преподавания,	

	пределах требований ФГОС в профессиональ ной деятельности	виды и приемы современных педагогических навыков; ИПК-1.3 Владеет основами общетеоретических дисциплин в объеме, необходимых для решения педагогических и научно-методических задач.	тест
ПК-3	Способен разрабатывать и реализовывать использование современных способов математики в условиях ИКТ	ИПК-3.1 Формирует у обучающихся умения применять средства ИКТ в решение задач там, где эффективно; ИПК-3.2 Использует информационные источники и знакомит обучающихся с последними открытиями в области математики; ИПК- 3.3 Владеет ИКТ компетентностями профессиональной деятельности.	Разно уровневые задачи Решение задач тест

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Математический анализ» относится к циклу обязательных дисциплин математического и естественнонаучного цикла (Б1.В.11), изучается на 3-4 семестре.

При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплинам 2-3, указанных в Таблице 3. Дисциплина 1 относятся к группе «входных» знаний, вместе с тем определенная её часть изучается параллельно с данной дисциплиной («входные-параллельные» знания). Теоретическими дисциплинами, для которых освоение данной дисциплины необходимо как предшествующее являются:4-5.

Таблица 3.

No	Название дисциплины	Семестр	Место дисциплины в структуре ОПОП
1.	Высшая алгебра	1-3	Б1.О.15
2.	Аналитическая геометрия	1-2	Б1.О.14
3.	Арифметика и элементарная алгебра	1-2	Б1.В.01
4.	Дискретная математика	5	Б1.В.05
5.	Дополнительные главы элементарной математики	5	Б1.В.ДВ.02.02

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ Объем дисциплины «Математический анализ» составляет:

- 3 семестр: 6 зачетные единицы, всего 216 часа, из которых: лекции 32 часов, практические занятия 16 часов, КСР 16 часов, самостоятельная работа 98 ч. + 54 часа контроль, всего часов аудиторной нагрузки 64 часов экзамен, К.р.
- 4 семестр: 4 зачетных единиц, всего 108 часа, из которых: лекции -28 часа, практические занятия -14 часа, КСР -14 часа, самостоятельная работа -25 часов + контроль -27 часов, всего часов аудиторной нагрузки -56 часов экзамен.

3.1. Структура и содержание теоретической части курса

III семестр

- Тема 1. Условный экстремум. Метод Лагранжа. 2ч
- **Тема 2.** Неявные функции от нескольких переменных. Вычисление производных от неясной функции. 2ч
- Тема 3. Числовые ряды. Основные понятия. Простейшие теоремы. 2ч
- Тема 4. Сходимость произвольных рядов. Функции сходимости. 2ч
- Тема 5. Числовые ряды: определение; сходимость; свойства сходящихся рядов. 2 ч.

(Дается общее понятие числового ряда и приводятся простейшие теоремы сходимости положительных рядов, свойства сходящихся рядов и критерия Коши сходимости ряда).

- **Тема 6.** Ряды с неотрицательными членами: признаки сравнения для рядов с неотрицательными членами. 2 ч. (Изучаются условия сходимости положительного ряда. Теорема сравнения рядов. Для исследования сходимости рядов используются признаки Даламбера и Коши, признаки Раабе, а также интегральный признак Маклорена Коши).
- **Тема 7.** Знакопеременные ряды. Абсолютно сходящиеся ряды. 2 ч. (Тема посвящена изучению знакопеременных рядов, где с помощью теоремы Лейбница устанавливается сходимость знакочередующихся рядов).
- **Тема 8.** Условно сходящийся ряды. Теорема Римана. Преобразование Абеля. Признаки сходимости рядов Абеля и Дирихле. 2 ч. (Для раскрытия темы приводятся преобразования Абеля и теорема Римана. Рассматриваются признаки сходимости рядов Абеля и Дирихле, также бесконечные произведения и условия их сходимости и теоремы сравнения рядов).
- **Тема 9.** Функциональные последовательности и ряды: Поточечная и равномерная сходимость. 2 ч. (Изучаются бесконечные последовательности и их пределы, бесконечные ряды и их суммы. приводится понятие равномерной и неравномерной сходимости и критерии Коши равномерной сходимости рядов).
- **Тема 10.** Признаки равномерной сходимости функциональных рядов. Признак Вейерштрасса. 2 ч. (Дается условие равномерной сходимости, устанавливаются условия существования конечного предела для заданной функциональной последовательности)
- **Тема 11.** Степенные ряды: леммы Абеля, интервал и радиус сходимости. 2ч. (Рассматривается теория степенных рядов и ряды многочленов в промежутке сходимости степенного ряда, которые находят себе важное приложение при изучении свойств степенных рядов, расположенных либо просто по степеням переменной х.)
- **Тема 12.** Свойства суммы степенного ряда: непрерывность, дифференцируемость, существование первообразной. 2 ч. (На этой теме рассматривается непрерывность суммы степенного ряда, непрерывность на концах промежутка сходимости, почленное интегрирование степенного ряда)
- **Тема 13.** Приложение степенных рядов к приближенным вычислениям. 2 ч. (На конкретных примерах разложений объясняются. как бесконечные ряды могут быть использованы для целей приближенных вычислений.)
- **Тема 14.** Интегралы зависящие от параметра: определение, непрерывность и интегрируемость по параметру. 2 ч. (Занятие начинается с постановки задачи интегралов, зависящих от параметра, рассматриваются функции двух переменных, определенную для всех значений х в некотором конечном или бесконечном промежутке)
- **Тема 15.** Признаки равномерной сходимости интегралов зависящие от параметра: признак Вейерштрасса. 2 ч. (Тема посвящена изучению равномерной сходимости интегралов при изложенной теории интегралов, зависящих от параметра. Приводится условие и достаточные признаки равномерной сходимости, придельный переход под знаком интеграла)
- Тема 16. Свойства несобственных интегралов зависящих от параметра. 2 ч.

(Для раскрытия темы приводится интеграл с бесконечным пределом, который зависит от параметра и доказывают для него ряд теорем, сходных с теоремами интеграла, зависящих от параметра с конечным пределом).

Итого 32 ч

IV семестр

- **Тема 1.** Криволинейные интегралы второго рода, их свойства -2 ч. (Рассматривается одна механическая задача, которая приводит к интегральным уравнениям. Приводится определение криволинейного интеграла второго порядка (типа), сведение к обыкновенному определенному интегралу)
- **Тема 2.** Случай замкнутого круга. Ориентация плоскости. Вычисления площадей с помощью криволинейных интегралов -2 ч. (Изучаются случаи, когда замкнутый контур (К) начало A и конец В пути интегрирования совпадают. рассматриваются приложения криволинейного интеграла к физическим и механическим задачам.)

- **Тема 3.** Условия независимости криволинейного интеграла от пути: постановка задачи -2 ч. (Рассматриваются условия независимости криволинейного интеграла от пути интегрирования. Для этого рассматриваются две произвольные кривые, лежащие в рассматриваемой области и соединяющие точки M и N)
- **Тема 4.** Кратные интегралы: понятие объема в n-мерном пространстве (мера Жордана) 2 ч. (Данная тема посвящена двойным интегралам, определенным и простейшим свойствам двойных интегралов, приводится задача об объеме цилиндрического бруса, также классы интегрируемых функций и интегралы как аддитивная функция области).
- **Тема 5.** Сведение кратного интеграла к повторному -2 ч. (Изучается приведение двойного интеграла к повторному в случае прямоугольной области. Доказана теорема о сведении двойного интеграла от непрерывной функции)
- **Тема 6.** Замена переменной в кратном интеграле: замена переменных в двукратном интеграле 2 ч. (Дается замена переменных в двойном интеграле (криволинейные координаты), рассматриваются приведение двойного интеграла к повторному в случае криволинейной области).
- **Тема 7.** Формула Грина -2 ч. (Устанавливается связь между двойных и криволинейных интегралов второго рода. Приводится подробное доказательство для области криволинейной трапеции и выражение площади с помощью криволинейных интегралов)
- **Тема 8.** Элементы теория поверхностей: понятия поверхности; эквивалентные отображения 2 ч. (Дается общая характеристика теории параметрического представления поверхности, где говорится об аналитическом представлении поверхности в пространстве)
- **Тема 9.** Поверхностные интегралы: поверхностные интегралы первого рода -2 ч. (Рассматривается понятие площади кривой поверхности, имеет известную аналогию с понятием длины кривой линии. сначала приводится пример Шварца, затем площадь поверхности, заданной явным уравнением и площадь поверхности в криволинейных координатах).
- **Тема 10.** Формула Стокса -2 ч. (Приводится определение поверхностного интеграла первого типа. Рассматриваются сведения поверхностного интеграла к обыкновенному двойному интегралу, когда поверхность гладкая, и механические приложения поверхностных интегралов первого типа.)
- **Тема 11.** Скалярные и векторные поля. Градиент; поток вектора через поверхность -2 ч. (Дается определение поверхностных интегралов второго типа исходя из направленной двухсторонней поверхности, гладкую и кусочно-гладкую, это равносильно выбору на поверхности определенной ориентации.)
- **Тема 12.** Циркуляция вектора -2 ч. (Изучается формула Стокса к выводу формулы, связывающей поверхности интеграла, к криволинейному и служащему обобщением уже известной формулы Грина.)
- **Тема 13.** Ряд Фурье по тригонометрической системе. Разложение функций в ряд Фурье -2 ч. (Для формулы Остроградского потребуется понятие скалярного и векторного поля и понятие тройного интеграла, поэтому сначала к лекции приводится определение тройного интеграла и условие его существования, основные свойства интегрируемых функций тройных интегралов.)
- **Тема 14.** Интеграл Фурье: интеграл Фурье как предельный случай ряда Фурье -2 ч. (В лекции приводится понятие циркуляции вектора взятых по некоторым замкнутым кривым. Определение вихря или ротора вектора, затем записывается формула Стокса в векторной форме, т.е. через вихрь).

Итого 28 ч

3.2. Структура и содержание практической части курса

III семестр

- Тема 1. Умножение функциональных матриц (матрица якоби) . 2 ч.
- Тема 2. Неявные функции от нескольких переменных. 2 ч.
- Тема 3. Отображения с неявным нулю якобианом. Принцип сохранения области. 2 ч.
- Тема 4. Достаточные условия зависимости функций. Условный экстремум. 2 ч.

- Тема 5. Критерий Коши сходимости ряда. 2 ч.
- Тема 6. Признаки Даламбера и Коши. 2 ч.
- Тема 7. Знакочередующиеся ряды, признак сходимости Лейбница. 2 ч.
- Тема 8. Двойные ряды, их свойства. 2 ч.

Итого 16 ч

IV семестр

- **Тема 1.** Криволинейные интегралы второго рода, их свойства -2 ч.
- **Тема 2.** Вычисления площадей с помощью криволинейных интегралов 2 ч.
- **Тема 3.** Связь с вопросом о точном дифференциале; дифференцирование интеграла, не зависящего от пути -2 ч.
- **Тема 4.** Определение кратного интеграла. Существование кратного интеграла 2 ч.
- **Тема 5.** Сведение кратного интеграла к повторному. Сведение двойного интеграла к повторному; обобщение на n-мерный случай -2 ч.
- **Тема 6.** Замена переменной в кратном интеграле: замена переменных в двукратном интеграле -2 ч.
- **Тема 7.** Формула Грина 2 ч.

Итого 14ч

3.3. Структура и содержание КСР

III семестр

- **Тема 1.** Теорема существования и дифференцируемость; вычисление производных от неявной функций. 2 ч.
- **Тема 2.** Достаточные условия зависимости функций. Условный экстремум. Метод Лагранжа. 2 ч.
- Тема 3. Интегральный признак сходимости рядов. 2 ч.
- Тема 4. Бесконечные произведения, условия сходимости. 2 ч.
- **Тема 5.** Функциональные свойства суммы ряда: непрерывность, почленный предельный переход к пределу, почленное интегрирование, почленное дифференцирование. 2 ч.
- Тема 6. Разложение основных элементарных функций в степенной ряд. 2 ч.
- **Тема 7.** Несобственные интегралы, зависящие от параметра: основные определения, равномерная сходимость. 2 ч.
- Тема 8. Непрерывность, интегрируемость, дифференцируемость. 2 ч.

Итого 16ч

IV семестр

- **Тема 1.** Существование и вычисление криволинейного интеграла второго рода -2 ч.
- **Тема 2.** Вычисления площадей с помощью криволинейных интегралов. Связь между криволинейными интегралами обоих типов -2 ч.
- **Тема 3.** Определение кратного интеграла. Существование кратного интеграла 2 ч.
- **Тема 4.** Сведение двойного интеграла к повторному; обобщение на n-мерный случай 2 ч.
- **Тема 5.** Криволинейные координаты; замена переменных в n-мерном интеграле 4 часа
- **Тема 7.** Приложение формулы Грина к исследованию криволинейных интегралов 2 ч.

Итого 14ч Таблица 4

№ п/п	Раздел Дисциплины	Виды учеб включая сам работу студ емкост	иостоят ентов и	ельную и трудо-		Лит- ра	Кол-во баллов за неделю
		Лек.	Пр.	КСР	CPC		
	III	семестр					
1	Условный экстремум. Метод Лагранжа	a. 2		_	6		12,5
	Тема СРС: Метод Лагранжа					1-5	
			2				

2	Неявные функции от нескольких переменных. Вычисление производных от неясной функции.	2			6		12,5
	Тема СРС: Вычисление производных от неясной функции.		-			1-5	
				2			
3	Числовые ряды. Основные понятия. Простейшие теоремы. Тема СРС: Условия сходимости положительного ряда	2	2	_	6	1-5	12,5
4	Сходимость произвольных рядов. Функции сходимости. Тема СРС: Признак Раабе	2	-	2	6	1-5	12,5
5	Числовые ряды: определение; сходимость; свойства сходящихся рядов. Критерий Коши сходимости ряда. Тема СРС: Критерий Коши сходимости ряда.	2	2	-	6	1-5	12,5
6	Ряды с неотрицательными членами: признаки сравнения для рядов с неотрицательными членами. Признаки Даламбера и Коши	2	_		6	1-5	12,5
	Интегральный признак сходимости рядов. Тема СРС: Признаки Даламбера и Коши			2			
7	Знакопеременные ряды. Абсолютно сходящиеся ряды. Знакочередующиеся ряды, признак сходимости Лейбница. Тема СРС: Знакочередующиеся ряды, признак сходимости Лейбница	2	2	_	6	1-5	12,5
8	Условно сходящийся ряды. Теорема Римана. Преобразование Абеля. Признаки сходимости рядов Абеля и Дирихле. Двойные ряды, их свойства. Бесконечные произведения, условия сходимости. Тема СРС: Вычисление двойных рядов	2	-	2	6	1-5	12,5
9	Функциональные последовательности и ряды: Поточечная и равномерная сходимость. Критерий Коши равномерно сходимости рядов. Тема СРС: Критерий Коши равномерно сходимости рядов.	2	2	_	6	1-5	12,5
10	Признаки равномерной сходимости функциональных рядов. Признак Вейерштрасса. Признак Дирихле и Абеля. Функциональные свойства суммы ряда: непрерывность, почленный	2	-	2	6	1-5	12,5

	предельный переход к пределу,						
	почленное интегрирование, почленное						
	дифференцирование. Тема СРС:						
	Признак Дирихле и Абеля						
11	Степенные ряды: леммы Абеля,	2		_	6		12,5
	интервал и радиус сходимости,	_					12,5
	Формула Коши-Адамара. Тема СРС:		2			1 - 5	
	Формула Коши-Адамара						
12	Свойства суммы степенного ряда:	2			6		12,5
	непрерывность, дифференцируемость,						
	существование первообразной.						
	Степенной ряд как ряд Тейлора.					1 – 5	
	Разложение основных элементарных		-			1 – 3	
	функций в степенной ряд. Тема СРС:			2			
	Разложение основных элементарных						
	функций в степенной ряд						
13	Приложение степенных рядов к	2		_	6		12,5
	приближенным вычислениям.						
	Теоремы Вейерштрасса о приближении		2				
	непрерывных функций						
	алгебраическими и					1 - 5	
	тригонометрическими многочленами					1 0	
	Тема СРС: Теоремы Вейерштрасса о						
	приближении непрерывных функций						
	алгебраическими и						
1.4	тригонометрическими многочленами	2					10.5
14	Интегралы зависящие от параметра:	2			6		12,5
	определение, непрерывность и						
	интегрируемость по параметру						
	Дифференцирование интегралов		_	2		1 - 5	
	Несобственные интегралы, зависящие от параметра: основные определения,			2			
	равномерная сходимость. Тема СРС:						
	Дифференцирование интегралов						
15	Признаки Равномерной сходимости	2		_	6		12,5
	интегралов зависящие от параметра:	_					12,5
	признак Вейерштрасса.					1 - 5	
	Критерий Коши. Тема СРС: Признак		2				
	Вейерштрасса. Критерий Коши.						
16	Свойства несобственных интегралов	2			8		12,5
	зависящих от параметра. Условия						, , , , , , , , , , , , , , , , , , ,
	предельного перехода под знаком		_				
	интеграла. Непрерывность,					1 - 5	
	интегрируемость, дифференцируемость			2			
	Тема СРС: Непрерывность,						
	интегрируемость, дифференцируемость						
	Итого по семестру:	32	16	16	98		200
	Итого:				216		
	IV cer		1		T	1	
1	Криволинейные интегралы второго	2			2		12,5
	рода, их свойства. Существование и		-	_		1 - 5	
	вычисление криволинейного интеграла			2			

	второго рода. Тема СРС: Функции с						
	ограниченным изменением						
2	Случай замкнутого круга. ориентация	2			2		12,5
	плоскости. Вычисления площадей с						ŕ
	помощью криволинейных интегралов.						
	Связь между криволинейными		2			1 – 5	
	интегралами обоих типов						
	Тема СРС: Вычисление интеграла						
	Стелтьеса			-			
3	Условия независимости	2			2		12,5
	криволинейного интеграла от пути:						ĺ
	постановка задачи. Связь с вопросом о						
	точном дифференциале;						
	дифференцирование интеграла, не		-			1 - 5	
	зависящего от пути. Тема СРС:						
	Вычисление криволинейных интегралов						
	первого рода			2			
4	Кратные интегралы: понятие объема в	2			2		12,5
	п-мерном пространстве (мера Жордана).						
	Измеримые множества. Определение						
	кратного интеграла. Существование		2			1 - 5	
	кратного интеграла. Тема СРС:						
	Вычисление криволинейных интегралов						
	второго рода			-			
5	Сведение кратного интеграла к	2			2		12,5
	повторному. Сведение двойного						
	интеграла к повторному; обобщение на		_			1 – 5	
	п-мерный случай. Тема СРС:		_			1-3	
	Вычисления площадей с помощью						
	криволинейных интегралов			2			
6	Замена переменной в кратном	2			2		12,5
	интеграле: замена переменных в						
	двукратном интеграле						
	Криволинейные координаты; замена		2			1 – 5	
	переменных в п-мерном интеграле.		2			1-3	
	Тема СРС: Связь с вопросом о точном						
	дифференциале; дифференцирование						
	интеграла, не зависящего от пути.			-			
7	Формула Грина. Приложение формулы	2			2		12,5
	Грина к исследованию криволинейных		_			1 – 5	
	интегралов. Тема СРС: Определение		_			1 - 3	
	кратного интеграла			2			
8	Элементы теория поверхностей:	2			2		12,5
	понятия поверхности; эквивалентные						
	отображения. Параметрически заданные						
	поверхности; поверхности заданные		2			1 – 5	
	неявно; касательная плоскость и					1-3	
	нормаль к поверхности . Тема СРС:						
	Сведение двойного интеграла к						
	повторному			-			
9	Площадь поверхности. Ориентация	2	_		2	1 - 5	12,5
	гладкой поверхности. Ориентируемые и			2		1-3	

	неориентируемые поверхности.						
	Тема СРС: Замена переменных в п-						
	мерном интеграле.						
10	Поверхностные интегралы:	2			2		12,5
	поверхностные интегралы первого рода		2			1-5	
	Сведение к обыкновенному двойному		2			1-3	
	интегралу. Тема СРС: Формула Грина			_			
11	Поверхностные интегралы второго	2			2		12,5
	рода: определение; основные свойства						
	Тема СРС: Касательная плоскость и		_				
	нормаль к поверхности			2			
12	Формула Стокса. Приложение формула	2			1		12,5
	Стокса к исследованию криволинейных						
	интегралов в пространстве. Тема СРС:		2			1 - 5	
	Ориентируемые и неориентируемые						
	поверхности.			ı			
13	Скалярные и векторные поля. Градиент;	2			1		12,5
	поток вектора через поверхность.						
	Формула Остроградсткого,		-			1 - 5	
	дивергенция. Тема СРС: Вычисление						
	поверхностных интегралов второго рода			2			
14	Циркуляция вектора. Формула Стокса.	2	2		1	1 – 5	12,5
	Вихрь. Тема СРС: Формула Стокса.					1-3	
	Итого по семестру:	28	14	14	25		200
	Итого:				108		

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль. Студенты **2** курсов, обучающиеся по кредитно-рейтинговой системе обучения, могут получить максимально возможное количество баллов - 300. Из них на текущий и рубежный контроль выделяется 200 баллов или 49% от общего количества.

На итоговый контроль знаний студентов выделяется 51% или 100 баллов.

Порядок выставления баллов: 1-й рейтинг (1-7 недели до 12,5 баллов+12,5 баллов (8 неделя — Рубежный контроль №1) = 100 баллов), 2-й рейтинг (9-15 недели до 12,5 баллов+12,5 баллов (16 неделя — Рубежный контроль №2) = 100 баллов), итоговый контроль 100 баллов.

К примеру, за текущий и 1-й рубежный контроль выставляется 100 баллов: лекционные занятия — 21 балл, за практические занятия (КСР, лабораторные) — 31,5 балл, за СРС — 17,5 баллов, требования ВУЗа — 17,5 баллов, рубежный контроль — 12,5 баллов.

В случае пропуска студентом занятий по уважительной причине (при наличии подтверждающего документа) в период академической недели деканат факультета обращается к проректору по учебной работе с представлением об отработке студентом баллов за пропущенные дни по каждой отдельной дисциплине с последующим внесением их в электронный журнал.

Итоговая форма контроля по дисциплине (экзамен) проводится как в форме тестирования, так и в традиционной (устной) форме. Тестовая форма итогового контроля по дисциплине предусматривает: для естественнонаучных направлений — 10 тестовых вопросов на одного студента, где правильный ответ оценивается в 10 баллов. Тестирование проводится в электронном виде, устный экзамен на бумажном носителе с выставлением оценки в ведомости по аналогичной системе с тестированием.

для студентов 2 курсов

Таблица 5.

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практически х (семинарски х) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Всего
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр

$$ME = \left[\frac{(P_1 + P_2)}{2} \right] \cdot 0,49 + 3u \cdot 0,51$$

zде UБ — uтоговый балл, P_I - итоги первого рейтинга, P_2 - итоги второго рейтинга, Эи — результаты итоговой формы контроля (экзамен).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую практическую составляющие обучения. При этом обеспечивается упорядочивание теоретических знаний, что, в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная работа планируется и организуется с целью углубления и расширения теоретических знаний, формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Математический анализ» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- Активная работа на лекциях
- Активная работа на практических занятиях
- Контрольно-обучающие программы тестирования (КОПТ).
- Выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- Проработка лекционного материала,
- Подготовка к практическим занятиям,
- Подготовка к аудиторным контрольным работам,
- Выполнение ИДЗ,
- Подготовка к защите ИДЗ,
- Подготовка к зачету, экзамену.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Математический анализ» включает в себя:

Таблица 6

№ п/п	Объем СРС в ч.	Тема СРС	Форма и вид СРС	Форма контроля
11/11	01 0 0 11	III семестр		nerrip etzi
1	6	Метод Лагранжа	Письменное решение упражнений и задач. ИДЗ	Разно уровневые задачи
2	6	Вычисление производных от неясной функции.	Письменное решение упражнений и задач. ИДЗ	Решение задач

3	6	Условия сходимости положительного ряда	Письменное решение упражнений и задач. ИДЗ	тест
4	6	Признак Раабе	Письменное решение упражнений и задач. ИДЗ	Разно уровневые задачи
5	6	Критерий Коши сходимости ряда.	Письменное решение упражнений и задач. ИДЗ	Решение задач
6	6	Признаки Даламбера и Коши	Письменное решение упражнений и задач. ИДЗ	тест
7	6	Знакочередующиеся ряды, признак сходимости Лейбница	Письменное решение упражнений и задач. ИДЗ	Разно уровневые задачи
8	6	Вычисление двойных рядов	Письменное решение упражнений и задач. ИДЗ	Решение задач
9	6	Критерий Коши равномерно сходимости рядов.	Письменное решение упражнений и задач. ИДЗ	тест
10	6	Признак Дирихле и Абеля	Письменное решение упражнений и задач. ИДЗ	Разно уровневые задачи
11	6	Формула Коши-Адамара	Письменное решение упражнений и задач. ИДЗ	Решение задач
12	6	Разложение основных элементарных функций в степенной ряд	Письменное решение упражнений и задач. ИДЗ	тест
	6	Теоремы Вейерштрасса о приближении непрерывных функций алгебраическими и тригонометрическими многочленами	Письменное решение упражнений и задач. ИДЗ	Разно уровневые задачи
13				Разно уровневые задачи
14	6	Дифференцирование интегралов	Письменное решение упражнений и задач. ИДЗ	Решение задач

15	7	Признак Вейерштрасса.	Письменное решение	тест
13		Критерий Коши.	упражнений и задач. ИДЗ	
	7	Непрерывность, интегрируемость,	Письменное решение	Разно
		дифференцируемость	упражнений и задач. ИДЗ	уровневые
16				задачи
				3 ,
Итог	о: 98 ч			
11101	0. 70 1	IV семестр		
	2	Функции с ограниченным изменением	Письменное решение	Решение
1			упражнений и задач. ИДЗ	задач
1				
_	2	Вычисление нтеграла Стелтьеса	Письменное решение	тест
2	_	Data mentaman arres punto e rensigeron	упражнений и задач. ИДЗ	
	2	Вычисление криволинейных интегралов	Письменное решение	Разно
	_	первого рода,	упражнений и задач. ИДЗ	уровневые
3		первого рода,	упражнении и зада 1. 11д3	задачи
3				задачи
	2	D	П	Daves
	2	Вычисление криволинейных интегралов	Письменное решение	Решение
4		второго рода,	упражнений и задач. ИДЗ	задач
5	2	Вычисления площадей с помощью	Письменное решение	тест
5		криволинейных интегралов	упражнений и задач. ИДЗ	
	2	Связь с вопросом о точном	Письменное решение	Разно
		дифференциале; дифференцирование	упражнений и задач. ИДЗ	уровневые
6		интеграла, не зависящего от пути.		задачи
	2	Определение кратного интеграла	Письменное решение	Решение
	-	определение кратного интеграна	упражнений и задач. ИДЗ	задач
7			упримнении и зиди и 11743	зиди і
	2	Charava mayara www.	Пуску моруческий стану	таат
8	2	Сведение двойного интеграла к	Письменное решение упражнений и задач. ИДЗ	тест
	2	повторному	7 1	Dan
	2	Замена переменных в п-мерном интеграле.	Письменное решение	Разно
			упражнений и задач. ИДЗ	уровневые
9				задачи
	2	Формула Грина	Письменное решение	Решение
10			упражнений и задач. ИДЗ	задач
10				
1.1	2	Касательная плоскость и нормаль к	Письменное решение	тест
11		поверхности	упражнений и задач. ИДЗ	
	1	Ориентируемые и неориентируемые	Письменное решение	Разно
	1	поверхности.	упражнений и задач. ИДЗ	уровневые
12		повериности.	упражнении и задал. идз	
			1	задачи

13	1	Вычисление поверхностных интегралов второго рода	Письменное решение упражнений и задач. ИДЗ	Решение задач
14	1	Формула Стокса.	Письменное решение упражнений и задач. ИДЗ	тест

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Индивидуальные домашние задания (ИДЗ) по дисциплине «Математический анализ» предназначены для студентов очной форм обучения нематематических факультетов, изучающих курс математики в соответствии с требованиями Федеральных государственных образовательных стандартов (ФГОС) по соответствующим направлениям подготовки. Работа содержит 12 индивидуальных домашних заданий (ИДЗ) по 30 вариантов в каждом, содержащих различные задания по дисциплине «Математический анализ».

Целью настоящего комплекта ИДЗ является ознакомление студентов с основами линейной алгебры и началами математического анализа. При решении заданий по линейной алгебре учащиеся отработают навыки действий с определителями и матрицами, а также решения систем неоднородных и однородных линейных алгебраических уравнений. При решении заданий по математическому анализу студенты освоят технику вычисления пределов функции, получат навыки исследования функций одной переменной с применением аппарата дифференциального исчисления.

В целом, самостоятельное решение индивидуальных заданий позволяет углубить теоретические знания, отработать практические навыки решения задач по дисциплине. Во введении к работе приведены примеры решения типовых заданий по теме с необходимыми методическими указаниями.

Накопление большого количества оценок за ИДЗ, самостоятельные и контрольные работы в аудитории позволяет контролировать учебный процесс, управлять им, оценивать качество усвоения изучаемого материала.

4.3. Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета. Рисунки выполняются простыми карандашами. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Ф.И.О. студента, направление, курс и группа.

4.4. Критерии оценки выполнения самостоятельной работы по дисциплине «Математический анализ»

Критериями оценок результатов внеаудиторной самостоятельной работы студента являются:

- -уровень освоения студентов учебного материала;
- -умения студента использовать теоретические знания при выполнении практических задач;

- -сформированность обще учебных умений;
- -умения студента активно использовать электронные образовательные ресурсы, находить требующуюся информацию, изучать ее и применять на практике;
 - -обоснованность и четкость изложения ответа;
 - -оформление материала в соответствии с требованиями;
 - -умение ориентироваться в потоке информации, выделять главное;
- -умение четко сформулировать проблему, предложив ее решение, критически оценить решение и его последствия;
- -умение показать, проанализировать альтернативные возможности, варианты действий;
 - -умение сформировать свою позицию, оценку и аргументировать ее.

Критерии оценки самостоятельной работы студентов:

Оценка «5» ставится тогда, когда:

- -Студент свободно применяет знания на практике;
- -Не допускает ошибок в воспроизведении изученного материала;
- -Студент выделяет главные положения в изученном материале и не затрудняется в ответах на видоизмененные вопросы;
 - -Студент усваивает весь объем программного материала;
 - -Материал оформлен аккуратно в соответствии с требованиями;

Оценка «4» ставится тогда, когда:

- -Студент знает весь изученный материал;
- -Отвечает без особых затруднений на вопросы преподавателя;
- -Студент умеет применять полученные знания на практике;
- -В условных ответах не допускает серьезных ошибок, легко устраняет определенные неточности с помощью дополнительных вопросов преподавателя;
 - -Материал оформлен недостаточно аккуратно и в соответствии с требованиями;

Оценка «3» ставится тогда, когда:

- -Студент обнаруживает освоение основного материала, но испытывает затруднения при его самостоятельном воспроизведении и требует дополнительных дополняющих вопросов преподавателя;
- -Предпочитает отвечать на вопросы воспроизводящего характера и испытывает затруднения при ответах на воспроизводящие вопросы;
 - -Материал оформлен не аккуратно или не в соответствии с требованиями;

Оценка «2» ставится тогда, когда:

- -У студента имеются отдельные представления об изучаемом материале, но все, же большая часть не усвоена;
 - -Материал оформлен не в соответствии с требованиями.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Основная литература

- 1. *Никитин, А. А.* Математический анализ. Углубленный курс [Электронный ресурс]: учебник и практикум для академического бакалавриата / А. А. Никитин, В. В. Фомичев. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2022. 460 с. https://biblio-online.ru
 - 2. Математика. Математический анализ для экономистов [Текст]: учебник для вузов /
 - О. И. Ведена, В.Н. Десницкая, Г.Б. Варфоломеева, А.Ф. Тарасюк; Под ред. А. А. Гриба, ред. А. Ф. Тарасюка. М.: Филинтъ: Рилант, 2001. 360 с.
- 3. *Кытманов, А. М.* Математический анализ [Электронный ресурс]: учебное пособие для бакалавров / А. М. Кытманов. Москва : Издательство Юрайт, 2019. 607 с. https://biblio-online.ru

4. *Максимова, О. Д.* Математический анализ в примерах и задачах. Предел функции [Электронный ресурс]: учебное пособие для вузов / О. Д. Максимова. — 2-е изд., стер. — Москва: Издательство Юрайт, 2019. — 200 с. https://biblio-online.ru

5.2. Дополнительная литература

- 1. Высшая математика для экономистов, под ред. Проф. Н.Ш. Кремера, 3-е издание М., Юнити, 2006.-478 с.
- 2. Общий курс математического анализа для экономистов, под. общ. ред., проф. В.И. Ермакова, М., Инфра, М., 2007, 655с.
- 3. Сборник задач по высшей математике для экономистов, под общ. ред., проф. В.И. Ермакова М., Инфра, М., 2007, 574с.
- 4. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии М., Наука, 1980.
- 5. Беклемшев Д.В. Курс аналитической геометрии и линейной алгебры М., Наука, 1976.

Интернет-ресурсы:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com

ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Издательство Лань» [Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». Режим доступа https://e.lanbook.com/;
- 2. ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». Режим доступа https://biblio-online.ru/;

ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Windows Serwer 2019;
- 2. ILO;
- 3. ESET NOD32.

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой – 1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету – 5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Умение находить область определения и множество значений, нули функции, промежутки знакопостоянства и монотонности, точки экстремума — залог успешного решения задач единого экзамена. Можно выделить два обобщенных умения, связанных с исследованием свойств функций:

- 1) уметь «читать» график функции и переводить его свойства с графического языка на алгебраический и наоборот;
- 2) уметь работать с формулой, задающей функцию, обосновывая или проверяя наличие указанных свойств, что связывает задачи данного блока и с другими темами школьного курса (решение уравнений и неравенств, вычисление производных и др.)

В подготовке к решению подобных заданий поможет таблица, в которой перечислены свойства функций и дан их перевод на язык графиков.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса алгебры и начала анализа.

Например, при нахождении нулей функции нужно решать уравнения; при определении промежутков знакопостоянства функции - решать неравенства; при поиске области определения функции - находить области определения выражения.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «Математический анализ» оснащены проектором для проведения презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕ-ВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОС-ВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации: экзамен на 3 семестре, экзамен на 4 семестре проводится в форме тестирования

Форма промежуточной аттестации (1 и 2 рубежный контроль) проводится путем выполнения самостоятельного задания.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица 7

Оценка по	Диапазон	Численное	Оценка по
буквенной	соответствующих	выражение	традиционной системе
системе	наборных баллов	оценочного балла	

A	10	95-100	Отлично	
A-	9	90-94		
B+	8	85-89		
В	7	80-84	Хорошо	
В-	6	75-79		
C +	5	70-74		
C	4	65-69		
C-	3	60-64	Vacantemporation	
D +	2	55-59	Удовлетворительно	
D	1	50-54		
Fx	0	45-49	Неудовлетворительно	

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC\ BO$.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.