МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

Естественнонаучный факультет

наименование факультета
Кафедра химии и биологии
 наименование кафедры

«УТВЕРЖДАЮ»

Зав. кафедрой «Химии и биологии» «28» августа 2024г.

Бердиев А.Э.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине **Органическая химия**

Направление подготовки-04.03.01 «Химия» Профиль подготовки – Общая химия

Форма подготовки – очная

Уровень подготовки - бакалавриат

ПАСПОРТ

ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине (модулю): <u>Органическая химия</u> **1.3. Требования к результатам освоения дисциплины**

No	Контролируемые разделы, темы	Формируем	Индикаторы	Оценочные	
п		ые	достижения	сред	ства
/π		компетенции	компетенции*	_	T
				К/в	Вид и
				0	коли/во
				зад	D
				ан	Вид
				ий	
1	Основные понятия органической химии	ОПК-1	И.ОПК-1.1.	10	
	.Предмет органической химии и связь с другими	Способен	Систематизирует		Опрос.
	химическими науками, биологией, медициной.	анализировать	и анализирует		Защита
	Сырьевые источники органических соединений.	И	результаты		реферата
	Значение соединений углерода в практической	интерпретиров	химических		Доклад.
	деятельности	ать результаты	экспериментов,		
	человеческого общества.	химических	наблюдений,		
2	Реакционная способность органических	экспериментов	измерений, а	1	
	соединений	, наблюдений и	также	0	Опрос.
	Химическая связь и реакционная способность	измерений	результаты		Защита
	органических соединений. Химическая связь как	измерении	расчетов свойств		реферата
	проявление единого взаимодействия в молекуле.		веществ и		Доклад.
	Типы химической связи: ионная, ковалентная,		материалов		
	семиполярная. Направленность связи.		И.ОПК-1.2.		
3	Непредельные углеводороды ряда		Предлагает	1	
	этилена. Гомологический ряд алкенов, их		интерпретацию	0	_
	изомерия, номенклатура. Геометрическая (цис-,		результатов		Опрос.
	транс-) изомерия. Описание		собственных		Защита
	электронного строения алкенов в терминах		экспериментов и		реферата
	локализованных σ - и π -молекулярных		расчетно-		Доклад.
	орбиталей.		теоретических		
	разложение		работ с		
	четвертичных аммониевых оснований (реакция		использованием		
	Гофмана)		теоретических		
4	Углеводороды с двумя двойными связями.		основ	10	Опрос.
	Классификация, изомерия и номенклатура.		традиционных и		Защита
	Электронное строение сопряженных диенов:		новых разделов		реферата
	π,π-сопряжение,представления о		химии		Доклад.
	делокализованных π -молекулярных орбиталях.		И.ОПК-1.3.		
	Важнейшие 1,3-диены (бутадиен, изопрен) и		Формулирует		
5	Ацетиленовые углеводороды		заключения и	10	
	Изомерия и номенклатура. Молекулярно-		выводы по		Опрос.
	орбитальное описание тройной связи, sp-		результатам		Защита
	гибридизация.		анализа		реферата
	Методы образования тройной связи,		литературных		Доклад.
	основанные на реакциях		данных,		
	дегидрогалогенирования. Карбидный и		собственных		
	пиролитический методы синтеза ацетилена.		экспериментальн		
6	Циклические углеводороды		ых и расчетно-	10	Опрос.
	Классификация, номенклатура и структурная		теоретических		Защита

7	изомерия. Относительная устойчивость циклов, ее анализ на основе представлений о различных типах напряжений: угловое и торсионное. Геометрическая изомерия. Ароматические углеводороды Бензол и его гомологи, изомерия, номенклатура. Противоречие между формальной ненасыщенностью бензольного кольца и химическими свойствами бензола: относительная устойчивость к окислению, склонность к реакциям замещения, термохимия гидрирования. Формулы Кекуле, Дьюара, Ладенбурга. Галогенпроизводные углеводородов	ОПК-3 Способен	работ химической направленности И.ОПК-3.1. Применяет теоретические и полуэмпирическ ие модели при решении задач химической направленности И.ОПК-3.2. Использует	10	реферата Доклад. Опрос. Защита реферата Доклад.
O	Моногалогенопроизводные алифатических углеводородов, их изомерия и номенклатура. Способы образования связи С-Hal: замещение атома водорода и гидроксильной группы, реакции присоединения по кратным связямэтилена.	применять расчетно теоретически е методы для изучения свойств	стандартное программное обеспечение при решении задач химической направленности	10	Защита реферата Доклад.
9	Спирты Одноатомные насыщенные спирты. Изомерия, классификация, номенклатура. Методы синтеза: присоединение воды к двойной связи, гидролиз связи С-Наl, восстановление карбонильной и карбоксильной групп, синтезы с использованием металлорганических соединений.	веществ и процессов с их участием с использовани ем современной вычислительн ой техники ПК-2 Способен использовать современную аппаратуру	И.ОПК-3.3. Решает задачи химической направленности с использованием специализирован	10	Опрос. Защита реферата Доклад.
10	Простые эфиры Классификация, номенклатура. Диалкиловые эфиры. Методы синтеза: дегидратация спиртов, реакция Вильямсона, присоеди?нение спиртов к олефинам. Расщепление простой эфирной связи (гидролиз). Взаимодействие эфиров с протонными кислотами и кислотами Льюиса. Эфираты		ного программного обеспечения И.ПК-2.1. способность применения оборудования для физических	10	Опрос. Защита реферата Доклад.
11	Карбонильные соединения Классификация и номенклатура. Способы образования карбонильной группы:	при проведении научных исследований	и физико- химических методов анализа	10	Опрос. Защита реферата Доклад.
12	Двухосновные и непредельные карбоновые кислоты Дикарбоновые кислоты. Номенклатура и классификация. Методы синтеза: окисление циклоалканов, алициклических спиртов и кетонов, аромати ческих и алкилароматических углеводородов, гидролиз динитрилов,		простых химических объектов; возможности и ограничения применения современных физических и	10	Опрос. Защита реферата Доклад.
13	Нитросоединения Номенклатура и классификация. Способы получения нитросоединений: нитрование		физико- химических	10	Опрос. Защита реферата

	углеводородов (радикальное	методов анализа		Доклад.
	и электрофильное замещение), обмен атома			доклад.
	галогена на нитрогруппу, окисление аминов,	сложных		
	синтез через соли диазония	химических		
14	Амины. Классификация, номенклатура.	объектов	20	Опрос.
1-7	Способы получения, основанные на реакциях	И.ПК-2.2.	20	Защита
	нуклеофильного замещения в галоген-,	проводить		реферата
	гидрокси- и аминопроизводных алифатических	<u>ـــ</u>		Доклад.
	и ароматических углеводородов; слот (реакция	кали́оровку и настройку		доклад.
	Лоссена)	* *		
15	Диазо- и азосоединения	серийного	10	Опрос.
13	Диазотирование ароматических аминов	оборудования	10	Защита
	(реакция Грисса). Электронное строение, катион	химических		реферата
	диазония, как	лабораторий;		Доклад.
	электрофильный реагент. Взаимопревращения	анализировать		доклад.
	различных форм диазосоединений. Реакции	химические		
	солей диазония,	вещества и		
16	Углеводы. Классификация, строение,	объекты и	10	
	номенклатура. Методы синтеза оксиоксо-	контролировать	10	Опрос.
	соединений различных типов. Гликолевый и	протекание		Защита
	глицериновый альдегиды; диоксиацетон.	процессов на		реферата
	Оптическая изомерия глицеринового альдегида.	серийном и		Доклад.
17	Экология и здоровье Человека. Основы	сложном	20	Опрос.
1 /	экологии. Структуры экологических систем.		20	Защита
	Управление в экосистемах. Источники энергии	научном		реферата
	экосистем. Прогнозы Римского клуба. Экология	оборудовании		Доклад.
	и здоровье Человека.	И.ПК-2.3.		доклад.
18	Принципы здорового образа жизни. Здоровье.	владение	20	Опрос.
	Отказ от вредных привычек. Соблюдение	практическими		Защита
	режима рационального питания. Соблюдение	навыками		реферата
	режима рациональной двигательной активности.	работы на		Доклад.
	На пути к единой культуре.	серийном		A state of
	Рубежный контроль 2	научном	90	Опрос
	Итоговый контроль (экзамен)	оборудовании	150	Тестирование
	(chounty)	химических	100	1 composition
		лабораторий		
		(фотометры,		
		иономеры, рН-		
		метры, весы,		
		термостаты);		
		теоретическими		
		основами и		
		практическими		
		навыками		
		работы на		
		сложном		
		научном		
		оборудовании		
		химических		
		лабораторий		
		(хроматографы,		
		полярографы,		
		спектрофотомет		

	ры, флуориметры, кулонометры)		
Всего:		150	

			Оце	еночные средства		
		Форми	Количест	Другие оценочные средства		
№ пп Ко	Контролируемые разделы, темы, модули ¹	руемые компет енции	во тестовых заданий	Вид	Ко ли чес тво	
1	Основные понятия органической химии .Предмет органической химии и связь с другими химическими науками, биологией, медициной. Сырьевые источники органических соединений. Значение соединений углерода в практической деятельности человеческого общества.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3	
2	Реакционная способность органических соединений Химическая связь и реакционная способность органических соединений. Химическая связь как проявление единого взаимодействия в молекуле. Типы химической связи: ионная, ковалентная, семиполярная. Направленность связи.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3	
3	Непредельные углеводороды ряда этилена. Гомологический ряд алкенов, их изомерия, номенклатура. Геометрическая (цис-, транс-) изомерия. Описание электронного строения алкенов в терминах локализованных σ- и π - молекулярных орбиталей. разложение четвертичных аммониевых оснований (реакция Гофмана)	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3	
4	Углеводороды с двумя двойными связями. Классификация, изомерия и номенклатура. Электронное строение сопряженных диенов: π,π-сопряжение,представления о	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3	

	делокализованных π-молекулярных орбиталях. Важнейшие 1,3-диены (бутадиен, изопрен) и				
5	Ацетиленовые углеводороды Изомерия и номенклатура. Молекулярноорбитальное описание тройной связи, spгибридизация. Методы образования тройной связи, основанные на реакциях дегидрогалогенирования. Карбидный и пиролитический методы синтеза ацетилена.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
6	Циклические углеводороды Классификация, номенклатура и структурная изомерия. Относительная устойчивость циклов, ее анализ на основе представлений о различных типах напряжений: угловое и торсионное. Геометрическая изомерия.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
7	Ароматические углеводороды Бензол и его гомологи, изомерия, номенклатура. Противоречие между формальной ненасыщенностью бензольного кольца и химическими свойствами бензола: относительная устойчивость к окислению, склонность к реакциям замещения, термохимия гидрирования. Формулы Кекуле, Дьюара, Ладенбурга.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
8	Галогенпроизводные углеводородов Моногалогенопроизводные алифатических углеводородов, их изомерия и номенклатура. Способы образования связи С-Hal: замещение атома водорода и гидроксильной группы, реакции присоединения по кратным связямэтилена.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
9	Спирты Одноатомные насыщенные спирты. Изомерия, классификация, номенклатура. Методы синтеза: присоединение воды к двойной связи, гидролиз связи С-Hal, восстановление карбонильной и карбоксильной групп, синтезы с использованием металлорганических соединений.	ОПК- 1,3 ПК - 2	10	Опрос. Защита реферата Доклад.	3

10	Простые эфиры Классификация, номенклатура. Диалкиловые эфиры. Методы синтеза: дегидратация спиртов, реакция Вильямсона, присоеди?нение спиртов к олефинам. Расщепление простой эфирной связи (гидролиз). Взаимодействие эфиров с протонными кислотами и кислотами Льюиса. Эфираты	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
11	Карбонильные соединения Классификация и номенклатура. Способы образования карбонильной группы:	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
12	Двухосновные и непредельные карбоновые кислоты Дикарбоновые кислоты. Номенклатура и классификация. Методы синтеза: окисление циклоалканов, алициклических спиртов и кетонов, аромати ческих и алкилароматических углеводородов, гидролиз динитрилов,	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
13	Нитросоединения Номенклатура и классификация. Способы получения нитросоединений: нитрование углеводородов (радикальное и электрофильное замещение), обмен атома галогена на нитрогруппу, окисление аминов, синтез через соли диазония	ОПК- 1,3 ПК - 2	15	Опрос. Защита реферата Доклад.	3
14	Амины. Классификация, номенклатура. Способы получения, основанные на реакциях нуклеофильного замещения в галоген-, гидрокси- и аминопроизводных алифатических и ароматических углеводородов; слот (реакция Лоссена)	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
15	Диазо- и азосоединения Диазотирование ароматических аминов (реакция Грисса). Электронное строение, катион диазония, как электрофильный реагент. Взаимопревращения различных форм диазосоединений. Реакции солей диазония,	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3

16	Углеводы. Классификация, строение, номенклатура. Методы синтеза оксиоксосоединений различных типов. Гликолевый и глицериновый альдегиды; диоксиацетон. Оптическая изомерия глицеринового альдегида.	ОПК- 1,3 ПК - 2	12	Опрос. Защита реферата Доклад.	3
Всего:			150		

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Естественнонаучный факультет

Кафедра химии и биологии

по «Органической химии»

Направление подготовки-04.03.01 «Химия» Профиль подготовки – Общая химия

Форма подготовки – очная

Уровень подготовки - бакалавриат

Билет № 1

- 1. Способы получения предельных углеводородов.
- 2. Диены. Особенности сопряженных двойных связей.
- **3.** Сколько литров муравьиного альдегида получится при окисления 16кг метилового спирта, содержащего 20% примесей? (у.н.)

Утверждено на за	селаниі	и кафе	лры		,	
протокол №		•	• ——	Γ.		
Заве. кафедрой			Бердие	- ев А.Э		

Контрольные задания для подготовки к экзамену:

- 1. Типы химических связей в органических соединениях.
- 2. Понятие о механизмах органических реакций. Типы разрыва связей.
- 3. Взаимное влияние атомов в органических соединениях.
- 4. Качественный анализ органических соединений. Способы выделения и очистки.
- 5. Виды изомерии органических соединений.
- 6. Алканы. Гомологический ряд, изомерия, номенклатура. Нахождение алканов в природе.
- 7. Химические свойства алканов. Механизм реакций радикального замещения.
- 8. Способы получения предельных углеводородов.
- 9. Химические свойства алкенов.
- 10. Способы получения алкенов.
- 11. Строение алкенов, номенклатура, изомерия, классификация. .
- 12. Изомерия и номенклатура непредельных углеводородов.
- 13. Понятие о стероидах и изопреноидах.
- 14. Механизм электрофильного присоединения (алкены, алкины, алкадиены).
- 15. Диены. Особенности сопряженных двойных связей.
- 16. Полимеры. Методы получения, свойства, применение.
- 17. Алкины. Изомерия. Номенклатура. Строение тройной связи.

- 18. Химические свойства алкинов.
- 19. Химические свойства алкинов. Реакции подвижного водородного атома.
- 20. Способы получения алкинов.
- 21. Ацетилен. Получение, свойства, применение.
- 32. Реакции присоединения, окисления и замещения в ароматическом ряду.
- 33. Способы получения ароматических углеводородов
- 34. Галогенопроизводные углеводородов. Изомерия. Методы получения.
- 35. Реакции алифатического нуклеофильного замещения в ряду галогенопроизводных и спиртов.
- 36. Спирты. Классификация, номенклатура, изомерия, физические свойства.
- 37. Химические свойства спиртов.
- 38. Многоатомные спирты. Получение, свойства, применение.
- 39. Методы получения спиртов.
- 40. Химические свойства фенолов. Реакции галогенирования, нитрования.
- 41. Простые эфиры. Получение, свойства, применение.
- 42. Альдегиды и кетоны. Строение. Изомерия. Номенклатура.
- 43. Способы получения альдегидов и кетонов.
- 44. Свойства альдегидов и кетонов. Реакции присоединения к карбонильной группе.
- 45. Альдольная и кротоновая конденсация.
- 46. Карбоновые кислоты. Классификация, строение, номенклатура.
- 47. Химические свойства карбоновых кислот.
- 48. Способы получения карбоновых кислот.
- 49. Реакции этерификации. Механизм.
- 50. Производные карбоновых кислот.
- 51. Понятие о липидах. Классификация. Фосфолипиды.
- 52. Жиры. Состав, строение, свойства.
- 53. Жиры. Жидкие и твердые. Гидролиз, гидрогенизация.
- 54. Мыла. Получение, строение.
- 55. Оксикислоты. Стереоизомерия. Оптическая активность.
- 56. Оксикислоты. Способы получения.
- 57. Оксикислоты. Химические свойства.
- 58. Оксокислоты. Получения и химических свойства их.
- 59. Ацетоуксусный эфир. Кето-енольная таутомерия.
- 60. Классификация и изомерия моносахаридов. Энантиомеры, диастереомеры.
- 61. Химические свойства моносахаридов.
- 62. Химические свойства моносахаридов. Окисление, восстановление, простые и сложные эфиры.
- 63. Гликозиды. Цикло-цепная таутомерия моносахаридов.
- 64. Дисахариды. Строение и свойства сахаров.
- 65. Восстанавливающие и невосстанавливающие дисахариды. Строение и свойства
- 66. Лактоза и сахароза. Гидролиз.
- 67. Крахмал. Амилоза и амилопектин. Клетчатка. Строение, свойства.
- 68. Амины. Классификация. Способы получения.
- 69. Алифатические амины.
- 70. Ароматические амины. Анилин. Применение.
- 71. Химические свойства алифатических и ароматических аминов.
- 72. Аминокислоты. Методы получения
- 73. Свойства аминокислот. Внутренние соли. Пептидная связь.
- 74. Белки. Классификация. Свойства, структура и функции белков.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: он обнаруживает обнаружившему высокий, продвинутый уровень сформированности компетенций, если он глубоко и прочно усвоил программный материал курса, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами и вопросами, причем не затрудняется с ответами при видоизменении заданий, правильно обосновывает принятые решения, владеет разносторонними навыками и приемами выполнения практических задач.

Оценка «хорошо» выставляется обучающемуся, если: он обнаруживает повышенный уровень сформированности компетенций, твердо знает материал курса, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.

Оценка «удовлетворительно» выставляется обучающемуся, если: он обнаруживает пороговый уровень сформированности компетенций, имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических задач;

Оценка «неудовлетворительно» выставляется обучающемуся, если: он обнаруживает недостаточное освоения порогового уровня сформированности компетенций, не знает значительной части программного материала, допускает существенные ошибки, неуверенно, с большими затруднениями решает практические задачи или не справляется с ними самостоятельно.

Оценка «зачтено» выставляется обучающемуся, если: он знает основные определения, последователен в изложении материала, демонстрирует базовые знания дисциплины, владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «не зачтено» выставляется обучающемуся, если: он не знает основных определений, непоследователен и сбивчив в изложении материала, не обладает определенной системой знаний по дисциплине, не в полной мере владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка не выставляется обучающемуся, если он не явился на экзамен, отказался от его сдачи, не знает программный материал, не может решить практические задачи.

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

Естественнонаучный факультет

Кафедра химии и биологии

Комплексный экзамен для выпускников бакалавриата направления

04.03.01 «Химия»

Билет № 1

- 1. Растворы, классификация. Концентрация раствора, способы ее выражения.
- 2. Алкины. Изомерия. Номенклатура. Строение тройной связи. Химические свойства алкинов.
- 3. Идеальные и неидеальные растворы. Закон Рауля.
- 4. Закон действующих масс. План конспект урока.

з гверждено н	а заседании кафедры
«Хими	ии и биологии»
протокол № от	«» апреля 20 г.
Зав. кафедрой	
Декан факультета	<u> </u>

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. В ответе отражены все дидактические единицы, предусмотренные заданием. Продемонстрировано знание фактического материала, отсутствуют фактические ошибки.
- 2. Продемонстрировано уверенное владение понятийно- терминологическим аппаратом дисциплины (уместность употребления, аббревиатуры, толкование и т.д.), отсутствуют ошибки в употреблении терминов. Показано умелое использование категорий и терминов дисциплины в их ассоциативной взаимосвязи. Продемонстрировано умение аргументировано излагать собственную точку зрения. Видно уверенное владение освоенным материалом, изложение сопровождено адекватными иллюстрациями (примерами) из практики.
- 3. Ответ четко структурирован и выстроен в заданной логике. Части ответа логически взаимосвязаны. Отражена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа укладывается в заданные рамки при сохранении смысла.
- 4. Высокая степень самостоятельности, оригинальность в представлении материала: стилистические обороты, манера изложения, словарный запас. Отсутствуют стилистические и орфографические ошибки в тексте. Работа выполнена аккуратно, без помарок и исправлений.

Оценка «хорошо» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. Продемонстрировано знание фактического материала, встречаются несущественные фактические ошибки.
- 2. Продемонстрировано владение понятийно-терминологическим аппаратом дисциплины (уместность употребления, аббревиатуры, толкование и т.д.), отсутствуют ошибки в употреблении терминов. Показано умелое использование категорий и терминов дисциплины в их ассоциативной взаимосвязи. Продемонстрировано умение аргументировано излагать собственную точку зрения. Изложение отчасти сопровождено адекватными иллюстрациями (примерами) из практики.
- 3. Ответ в достаточной степени структурирован и выстроен в заданной логике без нарушений общего смысла. Части ответа логически взаимосвязаны. Отражена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа незначительно превышает заданные рамки при сохранении смысла.
- 4. Достаточная степень самостоятельности, оригинальность в представлении материала. Встречаются мелкие и не искажающие смысла ошибки в стилистике, стилистические штампы. Есть 1-2 орфографические ошибки. Работа выполнена аккуратно, без помарок и исправлений.

Оценка «удовлетворительно» выставляется обучающемуся, если:

- 1. Содержание ответа в целом соответствует теме задания. Продемонстрировано удовлетворительное знание фактического материала, есть фактические ошибки (25-30%).
- 2. Продемонстрировано достаточное владение понятийно- терминологическим аппаратом дисциплины, есть ошибки в употреблении и трактовке терминов, расшифровке аббревиатур. Ошибки в использовании категорий и терминов дисциплины в их ассоциативной взаимосвязи. Нет собственной точки зрения либо она слабо аргументирована. Примеры, приведенные в ответе в качестве практических иллюстраций, в малой степени соответствуют изложенным теоретическим аспектам.
- 3. Ответ плохо структурирован, нарушена заданная логика. Части ответа разорваны логически, нет связок между ними. Ошибки в представлении логической структуры проблемы (задания): постановка проблемы аргументация выводы. Объем ответа в существенной степени (на 25-30%) отклоняется от заданных рамок.
- 4. Текст ответа примерно наполовину представляет собой стандартные обороты и фразы из учебника/лекций. Обилие ошибок в стилистике, много стилистических штампов. Есть 3-5

орфографических ошибок. Работа выполнена не очень аккуратно, встречаются помарки и исправления

Оценка «неудовлетворительно» выставляется обучающемуся, если:

- 1. Содержание ответа не соответствует теме задания или соответствует ему в очень малой степени Продемонстрировано крайне низкое (отрывочное) знание фактического материала, много фактических ошибок практически все факты (данные) либо искажены, либо неверны.
- 2. Продемонстрировано крайне слабое владение понятийно- терминологическим аппаратом дисциплины (неуместность употребления, неверные аббревиатуры, искаженное толкование и т.д.), присутствуют многочисленные ошибки в употреблении терминов. Показаны неверные ассоциативные взаимосвязи категорий и терминов дисциплины. Отсутствует аргументация изложенной точки зрения, нет собственной позиции. Отсутствуют примеры из практики либо они неадекватны.
- 3. Ответ представляет собой сплошной текст без структурирования, нарушена заданная логика. Части ответа не взаимосвязаны логически. Нарушена логическая структура проблемы (задания): постановка проблемы аргументация выводы. Объем ответа более чем в 2 раза меньше или превышает заданный.
- 4. Текст ответа представляет полную кальку текста учебника/лекций. Стилистические ошибки приводят к существенному искажению смысла. Большое число орфографических ошибок в тексте (более 10 на страницу). Работа выполнена неаккуратно, с обилием помарок и исправлений

Оценка не выставляется обучающемуся, если он отсутствовал или не предоставил контрольную работу по ее окончании.

Перечень оценочных средств

№ п/п	Наименование оценочного средства	Характеристика оценочного средства	Представление оценочного средства в ФОС
1.	Опрос	Опрос используется для контроля знаний студентов в качестве проверки результатов освоения вопросов учебной дисциплины	Вопросы по темам
2.	Защита реферата	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а так же собственные взгляды на неё.	Темы рефератов.
3.	Доклад	Продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебнопрактической, учебно-исследовательской и научной темы.	Темы докладов.

МОУ ВО «Российско-Таджикский» (Славянский) университет»

Кафедра химии и биологии

УСТНЫЙ ОПРОС

по дисциплине Органической химии

Вариант 1.

"Углеводороды"

Классификация органических соединений.

Методы получения и химические свойства алканов. Методы получения и химические свойства алкенов. Методы получения и химические свойства алкинов. Методы получения и химические свойства аренов. Методы получения и химические свойства аренов. Механизмы органических реакций.

Вариант 2.

"Спирты и карбонильные соединения"

Спирты. Классификация, номенклатура. Промышленные источники: гидратация алкенов, ферментативный

гидролиз углеводов, гидролиз алкилгалогенидов. Физические свойства. Водородные связи, растворимость в

воде. Химические свойства. Кислые и основные свойства спиртов. Образование солей, протонирование,

этерификация. Образование простых эфиров как результат нуклеофильного замещения. Дегидратация спиртов. Окисление. Фенолы. Способы введения гидроксильной группы в ароматическое кольцо: гидролиз арилгалогенидов, щелочной плав сульфокислот, кумольный синтез. Химические свойства. Реакции электрофильного замещения. Кислотность фенолов. Образование простых эфиров фенолов (синтез Вильямсона). Фенолформальдегидные смолы. Фенолы в растениях. Лигнин. Карбонильные соединения. Классификация, номенклатура. Способы образования карбонильной группы: окисление алканов и алкилароматических соединений, озонолиз олефинов, гидратация алкинов, гидролиз гемдигалогенидов, окисление спиртов, электрофильное ацилирование ароматических соединений. Химические свойства. Электронное строение карбонильной группы. Взаимодействие с нуклеофильными реагентами: водой, спиртами, аминами, магний- и литийорганическими соединениями. Кето-енольная таутомерия. Альдольно-кротоновая конденсация. Окислительно-восстановительные превращения альдегидов и кетонов.

Вариант 3.

по теме "Карбоновые кислоты"

- 1. Номенклатура карбоновых кислот.
- 2. Классификация карбоновых кислот.
- 3. Методы получения одноосновных карбоновых кислот.
- 4. Методы получения двухосновных карбоновых кислот.

Вариант 4

по теме "Амины и диазосоединения"

Классификация, номенклатура. Методы получения, основанные на реакциях нуклеофильного замещения в

галоген- и гидроксипроизводных углеводородов; реакциях восстановления нитросоединений (гидрирование

нитробензола в кислой и щелочной средах), азотсодержащих производных карбонильных соединений и

карбоновых кислот; перегруппировок амидов (Гофман), гидразидов (Курциус, Шмидт), карбоновых кислот и

оксимов (Бекман). - Электронное и пространственное строение аминогруппы. - Химические свойства. Основность и кислотность аминов, влияние природы заместителя (алкильных, арильных)

на кислотно-основные свойства аминов. Взаимодействие с электрофильными реагентами: алкилирование, оксиалкилирование, ацилирование. Реакции с азотистой кислотой: различия в химическом поведении первичных, вторичных и третичных аминов, а также алифатических и ароматических аминов.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: он принимает активное участие в обсуждении, работе коллоквиума и при этом выражает свою точку зрения аргументировано, обоснованно, приводит доказательственную базу, хорошо знает основную канву происходивших событий и явлений, способен выявлять и анализировать их причины и последствия, выстраивать причинно-следственные цепочки;

Оценка «хорошо» выставляется обучающемуся, если: он принимает активное участие в работе коллоквиума, хорошо знает канву происходивших событий и явлений, но при этом не всегда в полной мере может обоснованно и аргументировано обосновать свою точку зрения, имеет проблемы при приведении доказательной базы своих суждений, при выстраивании причинно-следственных цепочек;

Оценка «удовлетворительно» выставляется обучающемуся, если: он не очень активно участвовал в обсуждении, в работе коллоквиума, имеет поверхностные знание о происходивших событиях и явлениях и не может убедительно сформулировать и отстоять свою точку зрения.

Оценка «неудовлетворительно» выставляется обучающемуся, если: он практически не принимал участие в обсуждении темы коллоквиума, не обладает достаточным количеством знаний по рассматриваемой проблеме, не может сформулировать свое отношение к ней, аргументировать ее.

Оценка не выставляется обучающемуся, если он отсутствовал или не принимал участие в коллоквиуме.

Оценка «зачтено» выставляется обучающемуся, если: он знает основные определения, последователен в изложении материала, демонстрирует базовые знания дисциплины, владеет необходимыми умениями и навыками при выполнении практических заданий.

Оценка «не зачтено» выставляется обучающемуся, если: он не знает основных определений, непоследователен и сбивчив в изложении материала, не обладает определенной системой знаний по дисциплине, не в полной мере владеет необходимыми умениями и навыками при выполнении практических заданий.

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ВОПРОСЫ ДЛЯ ПРОМЕЖУТОЧНОГО КОНТРОЛЯ ЗНАНИЙ ПО ДИСЦИПЛИНЕ

по дисциплине Органической химии

- 1. Укажите особенности органических соединений.
- 2. Теория химического строения А.М. Бутлерова. Ее основные положения.
- 3. Углеводороды и их классификация. Что такое гомологический ряд?
- 4. Углеводороды и их изомерия. Написать все возможные изомеры для бутана и бутена, а также для диметилбензола.

- 5. Типы химических реакций и механизм их протекания для конкретного класса органических соединений. Способы получения углеводородов и их химические свойства (показать на конкретных примерах).
- 6. Какие соединения называются спиртами? Какова их общая формула? Чем определяется атомность спиртов?
- 7. Как изменяются физические и химические свойства спиртов с увеличением углеводородного радикала и количества гидроксильных групп?
- 8. Как называется функциональная группа альдегидов и кетонов?
- 9. Какие типы реакций характерны для карбонильных соединений?
- 10. Существует ли взаимосвязь между спиртами и карбонильными соединениями?
- 11. Какими качественными реакциями можно различить многоатомные спирты, фенолы, альдегиды?
- 12. Амины, как производные углеводородов и аммиака. Какова общая формула аминов?
- 13. Какие амины обладают более сильными основными свойствами?
- 14. Какими химическими свойствами обладают аминокислоты?

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ТЕСТОВЫЕ ВОПРОСЫ

к экзамену по дисциплине Органической химии

@1.

Общие формулы алканов и циклоалканов соответственно выражаются:

```
$A) CaHiba ii CaHiba ;

$B) CaHiba ii CaHiba ;

$C) CaHiba ii CaHiba;

$D) CaHiba ii CaHiba;

$E) CaHiba ii CaHiba ;

@2.
```

Какое свойство указывает на принадлежность углеводорода к предельным соединениям:

- \$А) Углеводород не вступает в реакции присоединения;
- \$В) Молекула углеводорода содержит только σ -связи;
- \$С) Углеводород не реагирует с бромной водой;
- \$D) Углеводород вступает в реакции замещения с хлором и с азотной кислотой;
- \$E) Молекула углеводорода содержит только π -связи; @3.

Назовите углеводород по международной номенклатуре. CH_3 - $C(CH_3)_2$ -C(CH

```
$А) 2,3-диметилбутан;
$В) 2,2,3-триметилбутан;
$C) 2,3,3-тетраметилбутан;
$D) Октан;
$Е) 2,2,3,3-тетраметилбутан;
Какие исходные вещества используются при получении алкана из ацетилена:
$A) C<sub>2</sub>H<sub>2</sub>+2H<sub>2</sub>;
$B) C<sub>2</sub>H<sub>2</sub>+Br<sub>2</sub>;
$C) C<sub>2</sub>H<sub>2</sub>+H<sub>2</sub>O;
$D) C<sub>2</sub>H<sub>4</sub>+H<sub>2</sub>;
$E) C<sub>2</sub>H<sub>2</sub>+Cl<sub>2</sub>;
@5.
Какой углеводород образуется при взаимодействии металлического натрия с
1,3-дибромпентаном:
$А) пентан;
$В) пропан;
$С) циклопропан;
$D) декан;
$Е) этилциклопропан;
@6.
При циклизации какого углеводорода образуется метилциклонексан:
$А) пропан;
$В) гексан;
$С) этан;
$D) гептан;
$Е) октан;
@7.
Напишите уравнение реакции горения этана, сколько моль воды образуется
при сгорании 1 моль этана:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
```

@8.

Напишите схему реакции циклогексана с хлором и укажите тип реакции:

- \$А) присоединения;
- \$В) замещения;
- \$С) этерификация;
- \$D) гидрирование;
- \$Е) окисления;

@9.

Какой галогеналкан необходимо взять, чтобы по реакции Вюрца без побочных продуктов

получить гексан:

- \$А) этан;
- \$В) хлорэтан;
- \$С) дихлорэтан;
- \$D) 2-хлор;
- \$Е) 1-хлорпропан;

@10.

Осуществите следующую схему превращений 1,3-дибромпропан + 2Na ightarrow A + $^{\text{H}_{2}}
ightarrow$ Б

Назовите вещества А и Б :

- \$А) пропан и циклопропан;
- \$В) циклопропан, циклогексан;
- \$С) циклопропан, гексан;
- \$D) циклопропан, пропан;
- \$Е) циклопентан, бутан;

@11.

Чем отличаются непредельные углеводороды от других углеводородов:

- \$А) способностью к полимеризации;
- \$В) вступают в реакции этерификации;
- C наличием π -связи между атомами углерода;
- \$D) нехватка ато; мов водорода по сравнению с алканами;
- \$Е) наличием о-связи между атомами углерода;

@12.

Назовите углеводород по международной номенклатуре.

 $CH_3 - CH_2 - CH(CH_3) - C = CH$.

```
$А) 3-метилпентин-1;
$B) 3-метилбутин-4;
$C) 3-метилбутин-1;
$D) 3-метилбутин-2;
$E) 3-метилбутин-3;
@13.
Назовите углеводород по международной номенклатуре. СН3 - СН2 - С(СН3) =
CH<sub>2</sub>:
$А) 2-этилпропен-1;
$B) 3-этилбутен-1;
$C) 2-метилбутин-1;
$D) 3-метилбутин-2;
$E) 2-метилбутен-1;
@14.
Сколько алкинов может образоваться при каталитическом дегидрировании
2,3,3-триметил-гексана:
$A) 1;
$B) 5;
$C) 3;
$D) 4;
$E) 2;
@15.
Из какого спирта можно получить бутен-2:
$A) бутанол-1;
$B) бутанол-2;
$C) бутанол-4;
$D) алкены из спиртов не образуются;
$E) пентанол-1;
@16.
Какой непредельный углеводород можно получить из 1,1-дибромбутана:
$А) бутен-1;
$В) бутин-2;
$С) бутадиен-1,3;
$D) бутин-1;
$Е) пентан;
```

```
@17.
Из какого соединения в одну стадию нельзя получить пропен:
$А) пропанол-1;
$В) пропанол-2;
$С) 1,1-дибромпропан;
$D) пропин;
$E) 1,2-дибромпропан;
@18.
С каким веществом реагируют алкины, но не реагируют алкены:
$А) бром;
$В) вода;
$С) водород;
$D) аммиачный раствор хлорида меди (I);
$Е) кислород;
@19.
Этан образуется из этилена в реакции:
$А) изомеризации;
$В) дегидрирования;
$С) гидрирования;
$D) гидратации;
$Е) окисления;
@20.
Укажите механизм реакции присоединения воды к алкенам:
$А) электрофильное гидрирование;
$В) электрофильное присоединение;
$С) нуклеофильное присоединение;
$D) радикальное присоединение;
$Е) электрофильное замещения;
@21.
Напишите структурную формулу толуола и укажите общее число sp²-
гибридизованных атомов углерода:
$A) 3;
$B) 5;
$C) 6;
$D) 7;
```

```
$E) 8;
@22.
Из перечисленных соединений выберите гомолог бензола:
$А) гексадиен-1,4;
$В) триацетилен;
$С) гексатриен-1,3,5;
$D) толуол;
$Е) стирол;
@23.
Углеводород является ароматическим, если имеет:
$А) плоский углеродный скелет;
$В) циклический углеродный скелет;
C делокализованную циклическую систему, содержащую (4n+2) \pi-
электронов;
$D) пункты А, В, С, являются правильными;
$Е) пункты А, В, С, D являются неправильными;
@24.
Напишите уравнение реакции получения бензола из циклогексана и
укажите коэффициент перед молекулярным водородом:
$A) 1;
$B) 3;
$C) 4;
$D) 5;
$E) 6;
@25.
Назовите промежуточное вещество X в двух стадийном синтезе бензола по
схеме:
бромпропан→Х→бензол:
$А) гексан;
$В) пропен;
$C) циклогексан;
$D) ацетилен;
$Е) пропан;
@26.
```

С каким веществом реагируют ароматические углеводороды и не реагируют алканы: \$A) ¹; \$B) Cl; \$C) HNO3; \$D) водным раствором кмпо, ; \$E) C:H:C1; @27. Реакция бензола с хлором в присутствии катализатора хлорида алюминия протекает по механизму: \$А) радикального присоединения; \$В) радикального замещения; \$С) электрофильного замещения; \$D) нуклеофильного замещения; \$Е) нуклеофильного присоединения; @28. Некоторое вещество, молекула которого содержит 8 атомов углерода, реагирует с перманганатом калия и с хлором, но не реагирует с хлороводородом, укажите это вещество: \$А) Октан; \$В) Стирол; \$С) этилбензол; \$D) этилциклогексан; **\$E)** диметилциклогексан; @29. Напишите схему реакции нитрования бензойной кислоты. Укажите тип реакции: \$А) нуклеофильное замещение; \$В) нуклеофильное присоединение; \$C) нуклеофильного присоединения; \$D) электрофильное замещение; \$Е) электрофильное присоединение;

@30.

Напишите уравнение реакции бензола с одним молем серной кислотой. Укажите тип реакции и число атомов кислорода в молекуле органического продукта реакции: \$А) замещения, 4; \$В) замещения, 3; \$C) присоединения, 4; \$D) присоединения, 3; **\$E)** нет правильного ответа; @31. Напишите структурные формулы нижеследующих соединений и назовите их по международной номенклатуре изопропиловый спирт, изобутиловый спирт: \$A) пропано*л*-1, бутано*л*-1; \$В) пропанол-2, 2-метилпропанол-1; **\$C)** пропанол-2, бутанол-2; \$D) пропанол-1, бутанол-2; **\$E)** этано*л*, пропано*л*-1; @32. Этиленгликоль-: \$А) ближайший гомолог глицерина; \$В) двухатомный спирт; \$С) предельный одноатомный спирт; \$D) простейший фено*л*; \$E) предельный трехатомный спирт; @33. Какое из перечисленных веществ является гомологом 2-метилбутанола-1: \$А) Этиленгликоль; \$В) глицерин; \$C) метилбутандиол-1,2; \$D) ди метилбутанол-2; \$Е) бутанол-1; @34.Какой основной способ получения этанола в промышленности: \$А) гидролиз углеводов; \$В) гидратация этилена;

```
$C) окисление этана;
$D) перегонка спиртных напитков;
$E) горения алкилов;
@35.
Какой спирт не может быть получен гидратацией алкена:
$A) CH3-CH3-OH;
$B) CH3-CH(OH)CH3;
$C) (CH3)3COH;
$D) ((CH3)3C)3COH;
$E) CH: CH: CH: OH;
@36.
Назовите промежуточное вещество Х в двухстадийном синтезе пропанола-2
по схеме:
пропанол-1 \rightarrow X \rightarrow пропанол-2:
$А) 1-хлорпропан;
$В) пропан;
$С) пропен;
$D) этилен;
$Е) пропин;
@37.
Как называется реакция получения этилена из этилового спирта:
$А) внутримолеклярная гидратация;
$В) окисления;
$C) межмолекулярная дегидратация;
$D) гидролиз;
$Е) внутримолекулярная дегидратация;
@38.
Напишите уравнение реакции этилен + X → этиленгликоль и назовите
вещество Х:
$А) водный раствор перманганата калия;
$В) водный раствор КОН;
$С) спиртовой раствор КОН;
$D) бромная вода;
$Е) вода;
@39.
```

```
Спирты реагируют с ...., а фенолы- нет:
$А) натрием;
$В) гидроксидом натрия;
$С) соляной кислотой;
$D) бромной водой;
$E) Cu(OH):;
@40.
Фенолы реагируют с ..., а спирты –нет:
$А) натрием;
$В) гидроксидом натрия;
$С) соляной кислотой;
$D) бромная вода;
$E) Cu(OH)2;
@41.
Напишите структурную формулу пропанона-2 и укажите число атомов
водорода в его молекуле:
$A) 3;
$B) 5;
$C) 6;
$D) 8;
$E) 7;
@42.
Дано вещество сн.-со-сн., назовите его по международной номенклатуре:
$А) пропанон;
$В) бутанон-2;
$С) метилпропанон;
$D) бутанол-1;
$Е) бутанол-2;
@43.
Какое вещество получится при окислении этанола оксидом меди (II):
$А) этилен;
$В) этан;
$С) уксусная кислота;
$D) уксусный альдегид;
$Е) уксусный ангидрид;
```

@44.Какая реакция протекает при нагревании уксусного альдегида с водным раствором гидроксида натрия: \$А) нейтрализация; \$В) этерификация; \$С) альдольное присоединение; \$D) дисмутация; \$Е) Каницаро; @45. Какие альдегиды можно получить по реакции Кучерова из алкинов: \$А) только НСНО; \$B) только ^{снь-сно}; \$C) CaHaCHO; \$D) любой альдегид, кроме HCHO; \$E) c₄H₂CH₂CH₂CH₂; @46.Сколько моль спирта используется в схеме образования полуацеталя из альдегида: \$A) 0,5; \$B) 1; \$C) 2; \$D) 3; \$E) 4; @47.В какой среде протекает реакция альдольной конденсации пропионового альдегида: **\$**A) кислая; \$В) нейтральная; \$C) щелочная; \$D) спиртовая; \$Е) водная; @48.Напишите реакцию уксусного альдегида с метиловым спиртом и укажите

тип реакции:

\$А) альдольное присоединение;

```
$В) дисмутация;
$С) нуклеофильное присоединение;
$D) этерификация;
$Е) иодоформная;
@49.
К какому классу относится продукт реакции между ацетоном и водородом:
$А) фенол;
$В) первичный спирт;
$C) кислота;
$D) вторичный спирт;
$Е) алкан;
@50.
Какое вещество образуется при нагревании уксусного альдегида с оксидом
серебра:
$А) этиловый спирт;
$В) уксусный ангидрид;
$C) хлор ангидрид;
$D) фенол;
$Е) уксусная кислота;
@51.
Напишите структурную формулу 2-метил- 2-бромбутановой кислоты и
укажите число атомов водорода в её молекуле:
$A) 4;
$B) 7;
$C) 8;
$D) 9;
$E) 1;
@52.
Карбоксильная группа-.....электронов в..... кислотах:
$А) донор, ароматических;
$В) акцептор, ароматических;
$С) донор, алифатических;
$D) донор, непредельных;
$Е) акцептор, непредельных;
@53.
```

```
Какая простейшая карбоновая кислота имеет изомер:
$А) муравьиная;
$В) уксусная;
$С) масляная;
$D) пропионовая;
$Е) спирт;
@54.
Напишите уравнение реакции получения пропионовой кислоты из
соответствующего ангидрида и укажите коэффициент перед кислотой:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
@55.
Какая схема включает только реакции окисления:
$A) CO2> RCOOH> RCH2OH> RCH3
$B) RCH2OH> RCHO> RCOOH> CO2;
$C) R2CHOH> R2CO> R2CHOH> CO2 :
$D) H:co> HCOOH> CH:OH> CO: ;
$E) chioh > hico > hcooh > co2;
@56.
Какое вещество способно к образованию водородных связей:
$A) CH3COOCH3;
$B) HCOOC:H:;
$C) C:H:COOH;
$D) chiochicho;
$E) ch.cooci;
@57.
Определите промежуточное вещество X в схеме синтеза малоновой кислоты,
CH1=CH-COOH > X + Y > HOOC-CH1-COOH
A) HOCH:CH:COOH;
$B) ch-ch(oh)cooh;
$C) CH3-CH(OH)COOH;
$D) HO;
```

```
$E) CHOH;
@58.
Гликоль был обработан PCl<sub>5</sub>, а затем KCN, при этом получен динитрил.
После гидролиза
динитрила образовалась глутаровая кислота. Какой гликоль был взят в
качестве исходного вещества) Напишите уравнения реакций:
$А) этанол-1,2;
$В) этандиол-1,1;
$С) пропандиол-1,3;
$D) пропандиол -1, 2;
$Е) бутандиол-1, 4;
@59.
Расположите в ряд по увеличению кислотных свойств следующие кислоты
муравьиная кислота; уксусная кислота; пропионовая кислота:
$А) Муравьиная, уксусная, пропионовая;
$В) Муравьиная, пропионовая, уксусная);
$С) Пропионовая, уксусная, муравьиная;
$D) Уксусная, пропионовая, муравьиная;
$Е) ответ A, B, C, D;
@60.
Укажите вещество, которое образуется при взаимодействии уксусной
кислоты с избытком хлора:
$А) Хлоруксусная кислота;
$В) Хлорангидрид уксусной кислоты;
$С) Дихлоруксусная кислота;
$D) Трихлоруксусная кислота;
$Е) уксусный ангидрид;
@61.
Напишите структурную формулу пальмитодилинолеата и укажите число
атомов водорода в его молекуле:
$A) 98;
$B) 105;
$C) 110;
$D) 6;
$E) 56;
```

```
@62.
Напишите формулу тристеарата и укажите число атомов углерода в его
молекуле:
$A) 3;
$B) 6;
$C) 57;
$D) 59;
$E) 100;
@63.
Укажите формулу \alpha-глицерофосфата:
A) CH<sub>2</sub>(OH)-CH(OH)-CH<sub>2</sub>(OH):
$B) н₄ю, ;
SC) CH<sub>2</sub>(OH)-CH(OH)-CH<sub>2</sub>(OPO<sub>2</sub>H<sub>2</sub>) :
$D) CH<sub>2</sub>(OR)-CH<sub>2</sub>(OPO<sub>2</sub>H<sub>2</sub>);
SE) CH2(OH)-CH2-CH2(OPO3H2);
@64.
Напишите реакции глицерина с 2 молями стеариновой и 1 молем олеиновой
кислоты, назовите
продукт:
$А) диолеостеарат;
$В) олеодистеарат;
$С) тристеарат;
$D) триолеат;
$Е) диолеодистеарат;
@65.
Напишите уравнение реакции глицерина с 3 молями линоленовой кислоты
и назовите продукт
реакции:
$А) глицерин;
$В) трилинолеат;
$C) дилинолеат;
$D) триглицерат;
$Е) линолеат;
@66.
```

Какая кислота не входит в состав природных жиров:

```
$A) C15H 54O2;
$B) C17H 14O2 ;
$C) C15H52O2;
$D) C16H 32O2;
$E) c<sub>2</sub>H<sub>2</sub>OH;
@67.
Какое средство может входить в состав моющих средств:
$А) тристеарат;
$В) стеарат натрия;
$С) олеинат калция;
$D) пальмитат магния;
$Е) стеарат кальция;
@68.
Напишите схему реакции получения триглицерида-олеодистеарата и
укажите коэффициент перед непредельной кислотой:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
@69.
Из какого спирта образуются природные жиры:
$А) одноатомный спирт;
$В) двухатомный спирт;
$С) третичный спирт;
$D) трехатомный спирт;
$E) альдегиды;
@70.
Какая реакция используется для доказательства наличия остатков
непредельных кислот в молекуле жиров:
$А) присоединение брома;
$В) серебряное зеркало;
$С) гидратация;
$D) этерификация;
$Е) нуклеофильный;
```

```
@71.
Напишите структурную формулу глиоксиловой кислоты и укажите число
атомов кислорода в её молекуле:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
@72.
Напишите структурную формулу α-гидрокси-β-хлорпропионовой кислоты и
укажите число атомов водорода в её молекуле:
$A) 2;
$B) 4;
$C) 3;
$D) 5;
$E) 1;
@73.
Напишите схему реакции и укажите промежуточное вещество Х.
Уксусный альдегид→Х→молочная кислота:
$А) аминоуксусная кислота;
$В) нитрилуксусный альдегид;
$С) пропаналь;
$D) 2-гидроксипропаннитрил;
$Е) пропанон;
@74.
Напишите схему реакции и укажите вещество X.молочная кислота + X \rightarrow
пировиноградная кислота:
$A) [H];
$B) [O];
$C) KCN;
$D) H:O;
$E) HCN;
@75.
Напишите уравнение реакции происходящей при нагревании β-
```

гидроксипропионовой кислоты. Назовите продукт реакции:

```
$А) непредельная кислота;
$B) ү-лактон;
$C) лактид;
$D) дикетопиперазин;
$E) лактам;
@76.
Напишите уравнение реакции молочной кислоты с избытком натрия и
укажите число атомов водорода в молекуле полученной соли:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
@77.
Какой атом углерода называется ассиметрическим:
$A) ₱ -гибридизованный атом углерода;
$B) sp-гибридизованный атом углерода;
$С) углерод, связанный с 4 различными группами атомов;
$D) углерод, связанный с 4 атомами водорода;
$E) ответ A, B, C, D;
@78.
Какие вещества называются оптическими изомерами:
$А) имеют одинаковый состав, но различные структуры;
$В) имеют одинаковый состав, но атомы находятся в цис- и транс-
положениях;
$С) имеют одинаковый состав, но различные конформации;
$D) имеют одинаковый состав, но по разному вращают плоскость
поляризованного света;
$Е) ответ A, B, C, D;
@79.
Напишите уравнение реакции пировиноградной кислоты с HCN и укажите
число атомов углерода в молекуле продукта реакции:
$A) 2;
$B) 4;
$C) 6;
```

```
$D) 8;
$E) 1;
@80.
Напишите реакцию пировиноградной кислоты с этиловым спиртом.
Укажите название
органического продукта реакции:
$А) ацетоуксусный эфир;
$В) этилацетат;
$С) этилпропионат;
$D) этиловый эфир пировиноградной кислоты;
$Е) этиловый эфир пропионовой кислоты;
@81.
Напишите структурную формулу диэтиламина и укажите число первичных
атомов углерода в его молекуле:
$A) 1;
$B) 2;
$C) 3;
$D) 4;
$E) 5;
@82.
Дано вещество СНз-СНз-NH-СН(СНз)г). Укажите название этого амина):
$А) триметиламин;
$В) диэтиламин;
$С) этилизопропиламин;
$D) этил-2-метилэтиламин;
$Е) этилпропиламин;
@83.
Среди перечисленных соединений выберите изомер диэтиламина:
$А) 2-аминопропан;
$В) 2-амино-2-метилпропанол-1;
$C) диметилэтиламин;
$D) 2-метиланилин;
$Е) этилпропиламин;
@84.
```

```
Напишите структурную формулу этаноламина и укажите число атомов
водорода:
$A) 3;
$B) 5;
$C) 7;
$D) 9;
$E) 10;
@85.
Напишите уравнение реакции этилбромида с одним молем аммиака и
укажите число атомов водорода в молекуле полученного соединения:
$A) 4;
$B) 5;
$C) 6;
$D) 8;
$E) 9;
@86.
Какой амин получается при полном восстановлении 2-нитробутана:
$А) бутенамин;
$В) втор-бутиламин;
$С) диэтиламин;
$D) изобутиламин;
$Е) этилпропиламин;
@87.
Какая из нижеуказанных реакций используется для получения этиламина:
$А) нитроэтан + водород;
$В) этан + гидразин;
$C) этилен + аммиак;
$D) пропиламин + водород;
$Е) этил+пропиламин;
@88.
Основные свойства первичных аминов в газовой фазе описываются
уравнением:
$A) RNH:=RNH+H;
$B) RNH#H+> RNH#;
$C) RNH2+H2O> RNH2+OH-;
```

```
$D) RNH == R++NH3;
$E) RNH++++0> RNH++
@89.
Предельные амины - более сильные основания, чем аммиак, благодаря:
$А) неподеленной электронной паре атома азота;
$В) слабым кислотным свойством атомов водорода;
$С) электронно-донорным свойством предельных углеводородных
радикалов;
$D) полярности связи C-N;
$Е) ответ A, B, C, D;
@90.
С помощью какого вещества можно получить н-бутиламин из
бутилбромида:
$А) метанол;
$В) метиламин;
$C) аммиак;
$D) бутаналь;
$Е) метан;
@91.
По функциональным группам моносахариды классифицируются на:
$А) альдозы и кетозы;
$В) моносахариды и дисахариды;
$С) глюкозы и фруктозы;
$D) пентозы и гексозы;
$Е) моносахариды и полисахариды;
@92.
Какая функциональная группа не входит в состав углеводов:
$А) гидроксильная;
$В) карбонильная;
$C) альдегидная;
$D) сложноэфирная;
$Е) кетонная;
@93.
Сколько оптических изомеров существует у альдогексоз:
$A) 4;
```

```
$B) 8;
$C) 16;
$D) 32;
$E) 36;
@94.
Глюкоза и фруктоза это -:
$А) геометрические изомеры;
$В) изомеры функциональных групп;
$С) олигосахариды;
$D) гомологи;
$Е) ответ A, B, C, D;
@95.
Как называют два оптических изомера по отношению друг к другу, которые
являются антиподами:
$А) эпимеры;
$В) энантиомеры;
$С) диастереомеры;
$D) цис- и транс- изомеры;
$Е) ответ A, B, C, D;
@96.
Оптическая изомерия углеводов связана с существованием в их молекуле:
$А) нескольких гидроксильных групп;
$В) ассиметрических атомов углерода;
$C) карбонильной группы;
$D) кратных связей;
$Е) ответ A, B, C, D;
@97.
Какое из веществ не реагирует с глюкозой:
$А) бромная вода;
$B) Cu(OH):;
$C) CaCO<sub>3</sub> ;;
$D) (CH<sub>2</sub>CO)<sub>2</sub>O;
$E) CHij;
@98.
```

Определите промежуточное вещество X в следующей схеме превращений.

```
C6H12O6> X> CH3-C(O)-COOH •
$А) двуокись углерода;
$В) раствор перманганата калия;
$С) этиловый спирт;
$D) молочная кислота;
$E) [Ag(NH<sub>3</sub>) <sub>2</sub>]OH;
@99.
Образование полисахаридов из моносахаридов -это реакция:
$А) полимеризации;
$В) поликонденсации;
$С) этерификации;
$D) гидролиза;
$Е) окислении;
@100.
Напишите уравнение реакции получения глюкозы в процессе фотосинтеза и
укажите
коэффициент перед водой:
$A) 2;
$B) 3;
$C) 4;
$D) 6;
$E) 7;
@101.
Напишите уравнение окисления Д-глюкозы амиачным раствором оксида
серебра и укажите число атомов кислорода в молекуле органического
продукта реакции:
$A) 3;
$B) 6;
$C) 7;
$D) 12;
$E) 15;
@102.
Какое из нижеприведенных веществ используется для качественного
обнаружения нескольких гидроксильных групп в молекуле Д-рибозы:
$А) оксид серебра;
```

```
$В) гидроксид меди (II);
$C) азотная кислота;
$D) хлорид железа (II);
$E) [Ag(NH<sub>3</sub>)<sub>2</sub>]OH ;
@103.
С помощью какого вещества можно качественно различить D-глюкозу и D-
сорбит:
$A) Cu(OH) 2 (комн) температура) ;
$В) Ад2О (аммиачный раствор);
$C) азотная кислота;
$D) хлорид железа (III);
$E) H<sub>2</sub>O;
@104.
Какие из нижеприведенных дисахаридов являются восстанавливающими:
$А) сахароза и глюкоза;
$В) сахароза и мальтоза;
$C) целлобиоза и лактоза;
$D) целлобиоза и сахароза;
$Е) сахароза и лактоза;
@105.
Какой дисахарид относится к невосстанавливающим:
$A) лактоза;
$В) целлобиоза;
$С) сахароза;
$D) мальтоза;
$Е) гликоген;
@106.
Какой вид связи имеется между моносахаридными остатками в молекуле
лактозы:
A) \alpha-1,4-гликозидная;
$В) β-1,6-гликозидная;
C $C) \alpha-1,6-гликозидная;
$D) β-1,4-гликозидная;
$Е) \alpha-1,2-гликозидная;
@107.
```

```
Какой вид связи находится между моносахаридным остатками в молекуле
мальтозы:
$B) β-1,4-гликозидная;
$С) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$Е) \alpha-1,2-гликозидная;
@108.
Напишите уравнение реакции целлобиозы с избытком йодистого метила и
укажите коэффициент перед йодистым метилом:
$A) 2;
$B) 4;
$C) 8;
$D) 10;
$E) 12;
@109.
На мальтозу подействовали бромной водой. Назовите полученный
органический продукт
реакции:
$А) глюкоза;
$В) галактоза;
$С) мальтобионовая кислота;
$D) глюконовая кислота;
$Е) гликоген;
@110.
На мальтозу подействовали гидроксидом меди без нагревания, как
изменяется цвет раствора:
$А) голубой осадок превращается в красный осадок;
$В) голубой осадок растворяется с образованием синего раствора;
$С) голубой осадок не растворяется;
$D) голубой осадок превращается в белый осадок;
$E) ответ A, B, C, D;
@111.
На мальтозу подействовали гидроксидом меди при нагревании. Как
```

измениться цвет:

```
$А) голубой осадок превращается в красный осадок;
$В) голубой осадок растворяется с образованием синего раствора;
$С) голубой осадок не растворяется;
$D) голубой осадок превращается в белый осадок;
$Е) ответ A, B, C, D;
@112.
Напишите реакцию мальтозы с метанолом в присутствии HCl) Укажите
коэффициент
перед метанолом:
$A) 1;
$B) 2;
$C) 5;
$D) 8;
$E) 10;
@113.
Напишите реакцию целлобиозы с избытком уксусного ангидрида и укажите
коэффициент перед уксусным ангидридом:
$A) 1;
$B) 5;
$C) 6;
$D) 8;
$E) 10;
@114.
Напишите формулу сахарозы и укажите число гидроксильных групп в её
молекуле:
$A) 4;
$B) 6;
$C) 8;
$D) 10;
$E) 12;
@115.
Сколько гидроксильных групп имеется в молекуле лактозы:
$A) 4;
$B) 5;
$C) 7;
```

```
$D) 8;
$E) 10;
@116.
С каким из перечисленных реактивов может реагировать сахароза:
$A) CH<sub>3</sub>OH+HCl;
$В) бензол;
$С) оксид серебра;
$D) уксусный ангидрид;
$E) Cu<sub>2</sub>O;
@117.
Как химическим путем отличить крахмал от целлюлозы:
$A) реакция с H<sub>2</sub>;
$В) реакция с Ј2;
$С) реакция этерификации;
$D) гидролиз;
$Е) оксид серебра;
@118.
Какой углевод имеет линейное строение:
$А) целлюлоза;
$В) гликоген;
$С) амилопектин;
$D) крахмал;
$Е) гликоген;
@119.
Какой вид связи находится между моносахаридными остатками в молекуле
целлюлозы:
$В) β-1,4-гликозидная;
$С) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$Е) \alpha-1,2-гликозидная;
@120.
Какой вид связи находится между моносахаридными остатками в молекуле
амилозы:
```

```
$В) β-1,4-гликозидная;
$С) α-1,6-гликозидная;
$D) β-1,6-гликозидная;
$Е) \alpha-1,2-гликозидная;
@121.
Определите вид гибридизации электронных облаков атомов углерода в
алканах:
$A) sp-;
B) - sp2;
C) -sp3;
$D) s-s и p-p;
$E) sp5;
@122.
При опускании во что раскаленная окисленная медная проволока краснеет:
$А) Бензол;
$В) Толуол;
$С) Циклогексан;
$D) Этанол;
$Е) Гексан;
@123.
Какова геометрическая форма молекулы метана:
$А) Тетраэдрическая;
$В) Линейная;
$С) Объемная;
$D) Плоская;
$Е) Квадратная;
@124.
Что будет являться конечным продуктом гидролиза крахмала:
$А) Глюкоза;
$В) Сахароза;
$С) Этанол;
$D) Целлюлоза;
$Е) нет правильного ответа;
@125.
Что из перечисленного является изомером:
```

```
$А) Формальдегид и муравьиная кислота;
$В) Пентан и диметилпропан;
$С) Этанол и уксусная кислота;
$D) Бензол и фенол;
$Е) Альдегид и спирт;
@126.
Что образуется при гидролизе сахарозы:
$А) Крахмал;
$В) Глюкоза и этанол;
$С) Глюкоза и фруктоза;
$D) Целлюлоза;
$E) Лактоза;
@127. Что можно применить в качестве восстановителя:
$А) Фенол;
$В) Уксусную кислоту;
$С) Формальдегид;
$D) Нитробензол;
$Е) Марганцовка;
@128.
Определите общую формулу гомологического ряда аренов:
$A) CnH2n;
$B) CnH2n -2;
$C) CnH2n -6;
$D) CnH2n +2;
$E) CnH2n-5;
@129.
При горении метиламина образуются кроме углекислого газа?
$А) Азот и водород;
$В) Азот и вода;
$С) Аммиак и вода;
$D) Аммиак и водород;
$Е) Аммиак и спирт;
@130.
Какая реакция даст нам каучук?
$А) Полимеризация;
```

```
$В) Поликонденсация;
$С) Этерификация;
$D) Изомеризация;
$Е) Нейтрализақия;
@131.
Определите общую формулу гомологов ряда алкадиенов:
$A) CnH2n+2;
$B) CnH2n;
$C) CnH2n-2+;
$D) CnHn-2;
$Е) Нет обшая формула;
@132.
Из чего сможет образоваться в результате одностадийного превращения
бензол?
$А) Этилена;
$В) Бутадиена;
$С) Ацетилена;
$D) Метана;
$Е) Этана;
@133.
Чему равен коэффициент перед формулой кислорода в уравнении реакции
горения этана?
$A) 9;
$B) 7;
$C) 5;
$D) 3;
$E) 2;
@134.
Что из перечисленного не подвержено гидролизу?
$А) Жир;
$В) мыла;
$С) Хлорид цинка;
$D) Этан;
$Е) Карбонат натрия;
@135.
```

```
Что будет являться природным сырьем для производства азотной кислоты?
$А) Нитрат натрия;
$В) Аммиак;
$С) Хлорид аммония;
$D) Воздух;
$Е) Фосфин;
@136.
При какой реакции получают каучуки?
$А) Гидрогенизации;
$В) полимеризации;
$С) изомеризации;
$D) поликонденсации;
$Е) Дегидрогенизация;
@137.
Гидратацией какого вещества можно получить этаналь:
$А) Ацетилен;
$В) этилен;
$С) хлорэтан;
$D) метан;
$Е) бутан;
@138.
Ацетилен в лаборатории можно получить при взаимодействии:
$А) водорода с углеродом;
$В) карбида кальция с водой;
$С) карбида алюминия с водой;
$D) углерод и кислород;
$Е) из водорода;
@139.
Продуктом гидратации ацетилена является:
$А) муравьиный альдегид;
$В) муравьиная кислота;
$C) уксусный альдегид;
$D) метананаль;
$Е) спирт;
@140.
```

```
И ацетилен, и этилен при обычных условиях реагируют с:
$А) хлорной водой;
$В) оксидом натрия;
$C) калием;
$D) натрием;
$Е) водородом;
@141.
Какое из указанных веществ при взаимодействии с водой в присутствии
солей ртути образует альдегид:
$А) бутин-1;
$В) пропин
$С) этин;
$D) фосфин;
$Е) цианид;
@142.
В реакцию полимеризации при определённых условиях может вступать:
$А) Пропан;
$В) Ацетилен;
$С) бензол;
$D) толуол;
$Е) ксилол;
@143.
При полном гидрировании ацетилена образуется:
$А) Этанол;
$В) Этен;
$С) Этан;
$D) Этанал;
$Е) Этин;
@144.
Как пропен, так и пропин:
$А) обесцвечивает бромную воду;
$В) не подвергается окислению;
$С) не реагируют с водородом;
$D) не окисляются;
$E) не растворяются;
```

```
@145.
Реакция Вюрца:
$А) реакция бромирования;
$В) реакция взаимодействия моногалогенпроизводного с Na;
$С) реакция нитрования алканов;
$D) гидрирование;
$Е) окисление;
@146.
Что из предложенного не получают из метана:
$А) уксусный альдегид;
$В) воды;
$С) топливо;
$D) ацетилен;
$Е) водород;
@147.
Какое вещество образуется при взаимодействии циклопропана и
бромводорода:
$А) 2-бромпропен;
$В) 1-бромпропан;
$С) циклопропан бромид;
$D) бутилен;
$Е) водород;
@148.
В каком агрегатном состоянии при нормальных условиях находится гексан:
$А) твердое вещество;
$В) эмульсия;
$C) газ;
$D) жидкость;
$Е) золь;
@149.
Чем окисляются алканы во время процесса горения:
$А) кислородом воздуха;
$В) перманганатом калия;
$С) водородом воздуха;
$D) пероксидом;
```

\$E) азотом воздуха; @150. Составьте молекулярную формулу алкана, в молекуле которого содержится 26 атомов водорода: \$A) C26H12; \$B) C12H26; \$C) C12H26; \$D) C3H5; \$E) C26H52;

МОУ ВО «Российско-Таджикский» (Славянский) университет» Кафедра химии и биологии

ТЕМАТИКА ДОКЛАДОВ (РЕФЕРАТОВ)

по дисциплине Органической химии

- 1. Современные тенденции направления и перспективы развития науки
- 2. Основные принципы международной номенклатуры
- 3. Индукционные и мезомерные эффекты
- 4. Значение алканов и их применение. Циклоалканы
- 5. Основные химические свойства ненасыщенных углеводородов
- 6. Натуральные и синтетические каучуки. Применение
- 7. Природные полимеры. Изопреновое звено в природных соединениях.
- 8. Ориентация в дизамещенных бензола
- 9. Многоатомные спирты
- 10. Тиоэфиры. Способы получения.
- 11. Отдельные представители альдегиды и их применение.
- 12. Ароматические альдегиды и кетоны
- 13. Отдельные представители высшие жирные кислоты
- 14. Сложные и простые эфиры
- 15. Сложные липиды, их распространение и значение
- 16. Химические свойства и их зависимость от взаимного расположения гидроксила и карбоксильной группы

Тема докладов

- 1. Глюкоза и фруктоза; сравнение строения свойств
- 2. Отдельные представители ди- и полисахариды
- 3. Понятие о секстетных перегруппировках.
- 4. Образование комплексов с переносом заряда.
- 5. Перегруппировки Гофмана и Курциуса.
- 6. Реакции электрофильного замещения в бензольном ядре ароматических аминов, защита аминогруппы.
- 7. Реакции диазотирования первичных ароматических аминов.
- 8. Кислотно-основные равновесия с участием катиона арендиазония.
- 9. Азосочетание как реакция электрофильного замещения. Азо- и диазосоставляющие, условие сочетания с аминами и фенолами. Азокрасители.
- 10. Кислотно-основные свойства, амфотерность аминокислот.
- 11. Заменимые и незаменимые аминокислоты.

- 12. Понятие о ферментах и ферментативном катализе
- 13. Молекулярные π -орбитали пятичленных ароматических гетероциклов с одним гетероатомом
- 14. Реакции, характеризующие фуран как диен.
- 15. Нуклеофильное замещение атомов водорода в пиридине и хинолине в реакциях с амидом натрия (Чичибабин) и фениллитием
- 16. Методы исследования органических соединений: электронная, ИК, ЯМР-спектроскопия и масс-спектрометрия.

Критерии оценки:

Оценка «отлично» выставляется обучающемуся, если: работа написана грамотным научным языком, имеет чёткую структуру и логику изложения, обозначена проблема и обоснована ее актуальность, сделан краткий анализ различных точек зрения на рассматриваемую проблему и логично изложена собственная позиция, сформулированы выводы, тема раскрыта полностью, выдержан объем, точка зрения обучающегося обоснованна, в работе присутствуют ссылки на источники и литературу. Обучающийся в работе выдвигает новые идеи и трактовки, демонстрирует способность анализировать материал.

Оценка «хорошо» выставляется обучающемуся, если: работа студента написана грамотным научным языком, имеет чёткую структуру и логику изложения, точка зрения студента обоснованна, в работе присутствуют ссылки на источники и литературу. Среди недочетов могут быть: неточности в изложении материала; отсутствие логической последовательности в суждениях; не выдержан объем реферата; имеются упущения в оформлении.

Оценка «удовлетворительно» выставляется обучающемуся, если он выполнил задание, однако тему осветил лишь частично, допустил фактические ошибки в содержании реферата, не продемонстрировал способность к научному анализу, не высказывал в работе своего мнения, допустил ошибки в логическом обосновании своего ответа.

Оценка «неудовлетворительно» выставляется обучающемуся, если: тема реферата не раскрыта, обнаруживается существенное непонимание проблемы, задание выполнено формально, обучающийся ответил на заданный вопрос, но при этом не ссылался на источники и литературу, не трактовал их, не высказывал своего мнения, не проявил способность к анализу, то есть в целом цель реферата не достигнута.

Оценка не выставляется обучающемуся, если реферат им не представлен.

Составитель: Абдухоликова П.Н.

«28» августа 2024 г.