МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ Н НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН
МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЖИСКИЙ) УНИВЕРСИТЕТ»

«Утверждаю»
Декан естественнонаучного
факультета
Махмадбегав Р С

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ»

Направление 03.03.02 - «Физика» Форма подготовки — счная Уровень подготовки — Сакалавр Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Мипистерства образования и науки РФ от 07.08.2020 № 851.

При разработке рабочей программы учитываются

 требования работодателей, профессиональных стандартов по направлению (для общепрофессиональных и профессиональных дисциплин);

• содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;

• новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от 28 августа 2023 г.

Рабочая программа утверждена УМС <u>Естественнонаучного факультета</u>, протокол № 1 от 28 августа 2023г.

Рабочая программа утверждена Ученым советом <u>Естественнонаучного</u> факультета, протокол № 1_от 29 . 08. 2023г.

Заведующий кафедрой к.ф-м.н., доцент

Гаибов Д.С.

Зам. председатель УМС факультета

Абдулхаева Ш.Р.

Разработчик: к.ф.-м.н., доцент

Махмадбегов Р.С.

Разработчик от организации:

Акдодов Д.М.

Расписание занятий дисциплины

Таблица 1

Ф.И.О.	Ay	диторные занятия	Приём	Место работы
преподавателя	лекция	Практические	CPC	преподавателя
		занятия (КСР, лаб.)		
Махмадбегов Р.С.				

1. ЦЕЛИ, ЗАДАЧИ И ТРЕБОВАНИИ К ИЗУЧЕНИЯ ДИСЦИПЛИНЫ 1.1. Цели изучения дисциплины

Следует отметить, что изучение физико-химических свойств конденсированных сред имеет огромных успехов и развитие, которых привело к установлению фундаментальных свойств материального мира и широко используются в различных областях: медицине, химической технологии, промышленности и технике и. т.д., которым посвящено огромное количество научных статьей, монографий и учебников. В связи с этим, цель курса физика конденсированного состояния является обучения студентов общие закономерности конденсированных сред и при этом изложить материал с подробными выводами аналитических выражений и с разъяснением их физического смысла, а также изучения вопросы физики конденсированного состояния, которые были бы доступны и полезны студентам и молодим специалистам для проведения ими научных исследований.

1.2. Задачи изучения дисциплины

Достижения постановленной цели осуществляется путем решения следующих основных задач: 1. ознакомление студентов с основными понятиями, законами и природы конденсированных сред, т.е. овладение понятиями и определениями, изложенными в данном курсе; 2. умение изучать и анализировать состав, структура и взаимодействия различных конденсированных сред; 3. изучение способов физика конденсированного состояния, необходимых для исследования практических и теоретических вопросов науки, техники и т.д..

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины «Физики конденсированного состояния» направлен на формирование следующих общекультурных и профессиональных компетенций, необходимых для осуществления профессиональной деятельности:

Таблина 2.

			аолица 2.
Коды	Содержание	Перечень планируемых результатов обучения по	Вид
компетен	компетенций	дисциплине	оценочного
ции			средства
ОПК-2.	Способен	ИОПК 2.1.	Дискуссия
	проводить	Знает: основные определения и понятия общей и	
	научные	теоретической физики; основные формулы и законы	
	исследования	общей и теоретической физики; основные методы	
	физических	решения задач общей и теоретической физики.	
	объектов,	основы теоретическое и экспериментальное методы	
	систем и	исследования физических объектов; методы	
	процессов,	обработки и анализа экспериментальных данных;	
	обрабатывать	методы сопоставления теории с экспериментальных	
	И	данных в область исследуемые объектов; область	
	представлять	подтверждение фундаментальных законов физики	Устный
	эксперимента	при научные исследования физических объектов,	опрос

	льные данные	систем и процессов.	
	льные данные	ИОПК 2.2.	
		Умеет: решать задачи на применение формул общей	
		и теоретической физики; применять методы общей и	
		теоретической физики; использовать формулы	
		общей и теоретической физики в задачах	
		химической физики; принимать теоретические и	Коллоквиум
		экспериментальные методы для исследования	
		физических объектов; выбирать хороших методов	
		для обработки и анализа экспериментальных	
		данных; сопоставлять теории с экспериментальных	
		данных в область исследуемые объектов;	
		подтверждать фундаментальных законов физики	
		при научные исследования физических объектов,	
		систем и процессов.	
		иопк 2.3.	
		Владеет: навыками решения задач общей и	
		теоретической физики; навыками анализа и	
		исследования физических моделей физики;	
		навыками использования методов общей и	
		теоретической физики для решения задач физики;	
		навыками применение теоретические и	
		экспериментальные методы для исследования	
		физических объектов; навыками выбора хороших	
		методов для обработки и анализа	
		экспериментальных данных; способностью	
		выработка теории для экспериментальных данных в	
		область исследуемые объектов; способностью	
		подтверждение фундаментальных законов физики	
		при научные исследования физических объектов,	
ПК-2	Способность	систем и процессов. ИПК 2.1.	Пиотахозха
11K-2			Дискуссия
	ю проводить	Знает:	
	научные	- основных методов теоретической и	
	исследования	экспериментальной физики, экспериментальные	
	в избранной	основы научных приборов и методика проведения	
	области	современного научного эксперимента в различных	
	эксперимента	областях физики.	
	льных и (или)	- современные методы измерений и способы	
	теоретически	проведение эксперимента по определение основных	Устный
	х физических	физических величин во всех разделах физики, такие	опрос
	исследований	как оптик и спектроскопия, физика твердого тела,	
	с помощью	ядерной физики и т.д.	
	современной	- основные достижения, современные тенденции и	
	приборной	современную экспериментальную базу в области	

	базы (в том	физики.	
	`	ипк 2.2.	
	числе	Умеет:	
	сложного		
	физического	- проводить измерения физических характеристик	
	оборудования	объектов и осуществлять приготовление образцов и	
) и	подготовку приборов для проведения измерений.	TC
	информацион	- обрабатывать полученные экспериментальные	Коллоквиум
	ных	данные и проводить необходимые математические	
	технологий с	преобразования физических проблем, а также делать	
	учетом	оценки по порядку величины.	
	отечественног	ИПК 2.3.	
	ОИ	Владеет:	
	зарубежного	- навыками работы с современными	
	опыта	экспериментальными научными оборудованиями и	
		компьютерного управления современными	
		экспериментальными установками с	
		использованием специального программного	
		обеспечения;	
		- компьютерной обработки полученных	
		экспериментальных данных и использования	
		электронно-вычислительной техники для расчетов и	
		презентации полученных научных результатов.	
		- грамотного использования физического научного	
		языка для оформление ВКР, проектов и т.п.	
ПК-5	Способность	ИПК 5.1.	Дискуссия
	Ю	Знает:	
	проектироват	- основные технологии педагогического процесса и	
	ь,	системы управления учащихся во время проведение	
	организовыва	занятия и по изложенному материала физических	
	ть и	дисциплин и их взаимосвязь с другими	Устный
	анализироват	дисциплинами с учётов педагогических знаний;	опрос
	Ь	- методов системы управления учащихся при	
	педагогическу	взаимосвязь с обществом.	
	Ю	ИПК 5.2.	
	деятельность,	Умеет:	
	обеспечивая	- разрабатывать основные технологии	
	последователь	педагогического процесса и системы управления	Коллоквиум
	ность	учащихся во время проведение занятия и в жизни и	,
	изложения	обществе.	
	материала и	ИПК 5.3.	
	междисципли	Владеет:	
	нарные связи	- современными методами управление	
	физики с	педагогического процесса с учета современного	
1			
	1		
	другими дисциплинам	менталитета и развитие современного общества для освоение предмета физики при проведение занятие	

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

2.1. Дисциплина «Физика конденсированного состояния», входящая в Федеральный компонент цикла обязательных математических и естественнонаучных дисциплин в государственных образовательных стандартах 3-го поколения, включена в обязательную часть профессионального цикла Б1.О.28.

При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплинам 1-2, указанных в Таблице 2. Дисциплина 3 взаимосвязана с данной дисциплиной, она изучается параллельно. Теоретическими дисциплинами и практиками, для которых освоение данной дисциплины необходимо как предшествующее являются: 4-5.

2.2. К исходным требованиям, необходимым для изучения дисциплины «Физика конденсированного состояния» относятся знания, умения и виды деятельности, сформированные в процессе изучения дисциплин естественного направления:

Таблица 3.

№	Название дисциплины	Семестр	Место дисциплины в структуре ОПОП
1	Вычислительная физика (Практикум на ЭВМ)	2-3	Б1.О.24
2	Молекулярная физика	2	Б1.О.25
3	Атомная и ядерная физика	6	Б1.В.14
4	Термодинамика	7	Б1.О.29
5	Радиофизика	7	Б1.В.04

3. СТРУКТУРА И СОДЕРЖАНИЕ КУРСА, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем дисциплины (модуля) составляет 3 зачетных единиц, всего 108 часа, из которых: лекции -12 часов, практические занятия -12 часа, КСР -12 часов, самостоятельная работа -18 часов+36 часов контроль, всего часов аудиторной нагрузки -42 часов. Экзамен -6-ой семестр.

3.1. Структура и содержание теоретической части курса (12ч)

Тема 1. Структура вещества – 2 часа.

(Структура и основные свойства атома. Опыты Резерфорда по рассеянию α-частиц веществом. Ядерная модель атома Резерфорда. Общая характеристика строения атома. Энергия атома, ее кантование и радиус орбит стационарных состояний. Квантовые состояния атома водорода. Электронные оболочки и электронные конфигурации сложных атомов. Линейчатый спектр атома водорода. Атомные спектры. Теория Бора для водородоподобных систем. Экспериментальное подтверждение постулатов Бора).

Тема 2. Классическая и квантовая теория излучения – 1 час.

(Равновесное тепловое излучение. Закон Кирхгофа. Закон Стефана-Больцмана. Экспериментальное отыскание вида функции Кирхгофа. Теоретическое исследование вида функции Кирхгофа. Закон смещения Вина. Формула Рэлея-Джинса. Равновесная теория излучения черного тела на основе квантовых представлений.)

Тема 3. Основы квантовой оптики. – 1 час.

(Теория М.Планка. Фотоэлектрический эффект. Основные законы фотоэффекта. Импульс фотона. Эффект Комптона. Корпускулярно-волновая двойственность свойств света.)

Тема 4. Структура и основные свойства молекулы − 2 часа.

(Молекула. Химическая связь. Энергия связи атомов. Классификация связей. Структура

молекул. Внутренняя энергия молекулы. Молекулярные спектры. Свойства молекул. Конденсированное тело. Фазовое состояние вещества. Упорядоченность конденсированного состояния.)

Тема 5. Конденсированное состояние и межмолекулярные взаимодействия. – 2 часа.

(Методы изучения систем многих частиц. Современные представления о силах межмолекулярного взаимодействия. Структура жидкостей. Силы Ван-дер-Ваальса. Модельные потенциалы межмолекулярного взаимодействия. Жидкое и газообразное состояния. Системы молекул.)

Тема 6. Твердое тело. – 2 часа.

(Кристаллическая структура. Симметрия кристаллов. Дефекты в кристаллах. Типы кристаллов. Домены. Стеклообразное и аморфное состояние. О степени порядка.)

Тема 7. Реальные кристаллы при высоких температурах. – 1 часа.

(Испарение кристаллических тел. Механизм процессов диссоциации и дыркообразования в кристаллах. Зависимость степени диссоциации кристаллической решетки от температуры и давления. Кинетика структурных нарушений и тепловое движение нарушителей порядка в кристаллах. Самодиффузия и диффузия примесей в кристаллах.)

Тема 8. Статистическая теория жидкостей. – 1 часа.

(Особенности жидкого состояния вещества и состояние теории жидкостей. Тепловое движение молекул в жидкостях. Жидкости простые и не простые. Основы статистический термодинамики. Уравнение состояние газов и жидкостей. Теоретическое уравнение состояния неидеального газа. О теории свободного объема.)

Итого 12ч

3.2. Структура и содержание практической части курса (1ч)

Цель практических занятий — способствовать лучшему усвоению и закреплению теоретических знаний, полученных из лекционного курса и изучения литературы.

Практические занятия состоят из трех частей — вводной, основной и заключительной.

Вводная часть занятия содержит формулировку его цели, ответы на вопросы студентов по домашнему заданию, контроль его выполнения в любой форме и обсуждение понятий, утверждений и методов, знание которых необходимо для продуктивной работы на занятии.

Основная часть занятия включает в себя обсуждение типовых задач по теме занятия, методов и их решения, а также самостоятельное решение задач под руководством и при необходимой помощи преподавателя. В основную часть занятия входит также обучение студентов умению проверять, анализировать и интерпретировать полученные результаты.

Заключительная часть занятия содержит анализ тех знаний и умений, которые осваивались на занятии и должны быть закреплены при выполнении домашнего задания. Полезно также обсудить, при изучении, каких разделов данного курса и других дисциплин эти знания и умения будут необходимы. Выдача заданий для самостоятельной работы студентов и подробные рекомендации по его выполнению.

Занятие 1. Решение задач и обсуждение тем о структуре вещества, то есть конденсированных сред. -2 часа.

Занятие 2. Решение задач и обсуждение тем о классическом и квантовом физике $-\,2\,$ часа.

Занятие 3. Решение задач и обсуждение тем о структуре и основные свойства молекулы. – 2 часа.

Занятие 4. Решение задач и обсуждение тем о конденсированное состояние и межмолекулярные взаимодействия. -2 часа.

Занятие 5. Решение задач и обсуждение тем о твердых тел. – 2 часа.

Занятие 6. Решение задач и обсуждение тем о реальные кристаллы при высоких температурах. -2 часа.

3.3. Структура и содержание КСР (12ч)

Занятие 1. Контроль самостоятельных работ на тему: Основные законы физики о состав и структура веществ. – 2 часа.

Занятие 2. Контроль самостоятельных работ на тему: Изучение классических и квантовых представлений о тепловых излучений. – 2 часа.

Занятие 3. Контроль самостоятельных работ на тему: Основы квантовой оптики и физика элементарных частиц. -2 часа.

Занятие 4. Контроль самостоятельных работ на тему: Структура и основные свойства молекул конденсированного среда— 2 часа.

Занятие 5. Контроль самостоятельных работ на тему: Твердых тел и их классификации. – 2 часа.

Занятие 6. Контроль самостоятельных работ на тему: Классификации реальных кристаллов и их дислокации -2 часа.

Итого 12 ч Таблица 4

							таолі	ица 4
№ п/п	Раздел Дисциплины	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)				Лит- ра	Кол-во баллов в недел ю	
	Наименование тем	Лек	Пр	Лаб.	КСР	CPC		
	семес	стр						
1.	Структура вещества.	2				3	1-4	12,5
2	Решение задач и обсуждение тем о структуре вещества.		2		2	2	1-4	12,5
3	Основные законы физики о состав и структура веществ.				2		1-4	12,5
4	Классическая и квантовая теория излучения и основы квантовой оптики.	2				3	1-4	12,5
5	Решение задач и обсуждение тем о классическом и квантовом физике.		2			2	1-4	12,5
6	Изучение классических и квантовых представлений о тепловых излучений.				2		1-4	12,5
7	Структура и основные свойства молекулы	3				3	1-4	12,5
8	Решение задач и обсуждение тем о структуре и основные свойства молекулы.		3			2	1-4	12,5
9	Основы квантовой оптики и физика элементарных частиц.				2		1-4	12,5
10	Конденсированное состояние и межмолекулярные взаимодействия.	2			2	3	1-4	12,5
11	Решение задач и обсуждение тем о конденсированное состояние и межмолекулярные взаимодействия.		2				1-4	12,5
12	Структура и основные свойства молекул конденсированного среда.	3	3		2		1-4	12,5
		12	12		12	18		200

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль. Студенты <u>3 курсов</u>, обучающиеся по кредитно-рейтинговой системе обучения, могут получить максимально возможное количество баллов - 300. Из них на текущий и рубежный контроль выделяется 200 баллов или 49% от общего количества.

На итоговый контроль знаний студентов выделяется 51% или 100 баллов.

Порядок выставления баллов: 1-й рейтинг (1-7 недели до 12,5 баллов+12,5 баллов (8 неделя — Рубежный контроль №1) = 100 баллов), 2-й рейтинг (9-15 недели до 12,5 баллов+12,5 баллов (16 неделя — Рубежный контроль №2) = 100 баллов), итоговый контроль 100 баллов.

К примеру, за текущий и 1-й рубежный контроль выставляется 100 баллов: лекционные занятия – 21 балл, за практические занятия (КСР, лабораторные) – 31,5 балл, за СРС – 17,5 баллов, требования ВУЗа – 17,5 баллов, рубежный контроль – 12,5 баллов.

В случае пропуска студентом занятий по уважительной причине (при наличии подтверждающего документа) в период академической недели деканат факультета обращается к проректору по учебной работе с представлением об отработке студентом баллов за пропущенные дни по каждой отдельной дисциплине с последующим внесением их в электронный журнал.

Итоговая форма контроля по дисциплине (экзамен) проводится как в форме тестирования, так и в традиционной (устной) форме. Тестовая форма итогового контроля по дисциплине предусматривает: для естественнонаучных направлений – 10 тестовых вопросов на одного студента, где правильный ответ оценивается в 10 баллов. Тестирование проводится в электронном виде, устный экзамен на бумажном носителе с выставлением оценки в ведомости по аналогичной системе с тестированием.

Таблица 5

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практических (семинарских) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Bcero
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый	24	32	24	20	100
рейтинг					
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5

6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй	24	32	24	20	100
рейтинг					
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр для студентов 3-х курсов:

$$ME = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0,49 + 3u \cdot 0,51$$

, где ИБ — итоговый балл, P_1 - итоги первого рейтинга, P_2 - итоги второго рейтинга, Эи — результаты итоговой формы контроля (экзамен)

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и практическую составляющие обучения. При этом обеспечивается упорядочивание теоретических знаний, что в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная работа планируется и организуется с целью углубления и расширения теоретических знаний, формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Физика конденсированного состояния» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- активная работа на лекциях
- активная работа на практических занятиях
- контрольно-обучающие программы тестирования (КОПТ).
- выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- проработка лекционного материала,
- подготовка к практическим занятиям,
- подготовка к аудиторным контрольным работам,
- выполнение ИДЗ,
- подготовка к защите ИДЗ,
- подготовка к зачету, экзамену.

Таблица 6.

				Таблица 6.
$N_{\underline{0}}$	Объе	Тема СРС	Форма и вид СРС	Форма
Π/Π	M			контроля
	СРС в			-
	ч.			
1	3	Структура вещества. Структура и основные	Письменное	Защита работы
		свойства атома. Опыты Резерфорда по	решение	ountilla bassini
		рассеянию α-частиц веществом. Ядерная	1 -	
		1	* ±	
		модель атома Резерфорда. Общая	(индивидуальные	
		характеристика строения атома. Энергия	домашние задание)	
		атома, ее кантование и радиус орбит		
		стационарных состояний. Квантовые		
		состояния атома водорода. Электронные		
		оболочки и электронные конфигурации		
		сложных атомов. Линейчатый спектр атома		
		водорода. Атомные спектры. Теория Бора		
		для водородоподобных систем.		
		Экспериментальное подтверждение		
		постулатов Бора. Основные законы физики		
		о состав и структура веществ. Решение		
		задач.		
2	3		Пуск мочууса	Dayyyyma mafamyy
2	3	Классическая и квантовая теория излучения	Письменное	Защита работы
		и основы квантовой оптики. Равновесное	решение	
		тепловое излучение. Закон Кирхгофа. Закон	упражнений и задач	
		Стефана-Больцмана. Экспериментальное	(индивидуальные	
		отыскание вида функции Кирхгофа.	домашние задание)	
		Теоретическое исследование вида функции		
		Кирхгофа. Закон смещения Вина. Формула		
		Рэлея-Джинса. Равновесная теория		
		излучения черного тела на основе		
		квантовых представлений. Теория		
		М.Планка. Фотоэлектрический эффект.		
		Основные законы фотоэффекта. Импульс		
		фотона. Эффект Комптона. Корпускулярно-		
		волновая двойственность свойств света.		
		Решение задач.		
3	3	Структура и основные свойства молекулы	Пиогмониос	Zannama makama
)	J			Защита работы
		Молекула. Химическая связь. Энергия связи	решение	
		атомов. Классификация связей. Структура	упражнений и задач	
		молекул. Внутренняя энергия молекулы.	(индивидуальные	
		Молекулярные спектры. Свойства молекул.	домашние задание)	
		Конденсированное тело. Фазовое состояние		
		вещества. Упорядоченность		
		конденсированного состояния. Решение		
		задач и обсуждение тем о структуре и		
		основные свойства молекулы.		
			I	I .

4	3	Конденсированное состояние и	Письменное	Защита работы
		межмолекулярные взаимодействия. Методы	решение	
		изучения систем многих частиц.	упражнений и задач	
		Современные представления о силах	(индивидуальные	
		межмолекулярного взаимодействия.	домашние задание)	
		Структура жидкостей. Силы Ван-дер-		
		Ваальса. Модельные потенциалы		
		межмолекулярного взаимодействия. Жидкое		
		и газообразное состояния. Системы		
		молекул. Решение задач.		
5	3	Твердое тело. Кристаллическая структура.	Письменное	Защита работы
		Симметрия кристаллов. Дефекты в	<u> 1</u>	
		кристаллах.Типы кристаллов. Домены.		
		Стеклообразное и аморфное состояние. О		
		степени порядка. Твердых тел и их	домашние задание)	
		классификации. Решение задач.		
6	3	Реальные кристаллы при высоких	Письменное	Защита работы
		температурах. Испарение кристаллических	решение	
		тел. Механизм процессов диссоциации и	• •	
		дыркообразования в кристаллах.		
		Зависимость степени диссоциации	домашние задание)	
		кристаллической решетки от температуры и		
		давления. Кинетика структурных		
		нарушений и тепловое движение		
		нарушителей порядка в		
		кристаллах.Самодиффузия и диффузия		
		примесей в кристаллах. Классификации		
		реальных кристаллов и их дислокации.		
		Решение задач.		
	Ито	ого 18 ч		

5.СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1 *Казин*, *В*. *Н*. Физическая химия [Электронный ресурс]: учебное пособие для академического бакалавриата / В. Н. Казин, Е. М. Плисс, А. И. Русаков. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 182 с. https://biblio-online.ru
- 2. Дадаматов Х.Д., Тоиров А. Физика. Том.1.Механика. Учебный пособий для студентов высших учебных заведений. Душанбе: Изд. «Бухоро», 2014, 235 стр.
 - 3. Физическая химия: расчетные работы. В 2 ч. Часть 1 [Электронный ресурс]: учебное пособие для академического бакалавриата / Е. И. Степановских [и др.]; под редакцией Е. И. Степановских; под научной редакцией В. Ф. Маркова. 2-е изд. Москва: Издательство Юрайт, 2019. 133 с. https://biblio-online.ru 4. Айзенцон, А. Е. Физика [Электронный ресурс]: учебник и практикум для академического бакалавриата / А. Е. Айзенцон. Москва: Издательство Юрайт,
 - 5. *Горлач*, *В*. *В*. Физика [Электронный ресурс]: учебное пособие для прикладного бакалавриата / В. В. Горлач. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 215 с. https://biblio-online.ru

2019. — 335 c. https://biblio-online.ru

Дополнительная литература:

- 6. *Казин, В. Н.* Физическая химия [Электронный ресурс]: учебное пособие для академического бакалавриата / В. Н. Казин, Е. М. Плисс, А. И. Русаков. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 182 с. https://biblio-online.ru 7. Физическая химия: расчетные работы. В 2 ч. Часть 1 [Электронный ресурс]: учебное пособие для академического бакалавриата / Е. И. Степановских [и др.]; под редакцией Е. И. Степановских; под научной редакцией В. Ф. Маркова. 2-е изд. Москва: Издательство Юрайт, 2019. 133 с. https://biblio-online.ru 8. *Горлач, В. В.* Физика [Электронный ресурс]: учебное пособие для прикладного бакалавриата / В. В. Горлач. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 215 с. https://biblio-online.ru
- 9. Введение в физику твердого тела: перевод с английского / Ч. Киттель; Под ред. и пер. А. А. Гусева; Пер. А. В. Пахнева.? Москва: Наука, 1978.? 792 с.: ил.
- 10. Физика твердого тела: Учебное пособие / Ю.А. Стрекалов, Н.А. Тенякова. М.: ИЦ РИОР: НИЦ Инфра-М, 2013. 307 с.: 60х90 1/16. (Высшее образование: Бакалавриат).
- 11. Физика твердого тела / Епифанов Г.И. СПб:Лань, 2011. 288 с
- 12. Основы физики конденсированного состояния : [учебное пособие]
- / Ю. В. Петров. Долгопрудный: Интеллект, 2013. 213 с.

Интернет-ресурсы:

- 1. https://biblio-online.ru
- 2. http://webmath.exponenta.ru.
- 3. https://urait.ru/viewer/teoreticheskaya-mehanika

6.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой -3 час в неделю;

Подготовка к практическому занятию – 3 час;

Подготовка к экзамену – 4 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по физике конденсированной сред.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

Учебно-методический комплекс (УМК) призван помочь студенту понять специфику изучаемого материала, а в конечном итоге – максимально полно и качественно его освоить.

В первую очередь студент должен осознать предназначение комплекса: его структуру, цели и задачи. Для этого он знакомится с преамбулой, оглавлением УМК, говоря иначе, осуществляет первичное знакомство с ним.

Далее студент внимательно прочитывает и осмысливает тот раздел, задания которого ему необходимо выполнить.

Выполнение *всех* заданий, определяемых содержанием курса, предполагает работу с научными исследованиями (монографиями и статьями). Перед работой с научными источниками студенту следует обратиться к основной учебной литературе — учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам — справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их материалов позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение контрольной работы и т.д.).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ» оснащены проектором для проведения презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

Материально-техническое обеспечение образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья.

Для обеспечения доступности получения образования по образовательным программам инвалидами и ЛОВЗ в образовательном процессе используется специальное оборудование. Практически все аудитории университета оснащены мультимедийным оборудованием (проектор, экран, ПК), что позволяет доступно и наглядно осуществлять обучение студентов, в том числе студентов с нарушением слуха и зрения. Используемые современные лабораторные комплексы обладают высокой мобильностью, что позволяет использовать их для организации образовательного процесса для студентов с нарушениями опорно-двигательного аппарата.

Для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорнодвигательного аппарата, созданы условия для беспрепятственного доступа на прилегающую территорию, в здания университета, учебные аудитории, столовые и другие помещения, а также безопасного пребывания в них. На территории университета есть возможность подъезда к входам в здания автомобильного транспорта, выделены места парковки автотранспортных средств. Входы в университет оборудованы пандусами, беспроводной системой вызова помощи. Информативность доступности нужного объекта университета для людей с ограниченной функцией зрения достигается при помощи предупреждающих знаков, табличек и наклеек. Желтыми кругами на высоте 1,5 м от уровня пола оборудованы стеклянные двери. Первые и последние ступени

лестничных маршей маркированы желтой лентой. Для передвижения по лестничным пролетам инвалидов – колясочников приобретен мобильный подъемник – ступенькоход. В учебном корпусе оборудована универсальная туалетная комната в соответствии с требованиями, предъявляемыми к подобным помещениям.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

8.1. Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Форма итоговой аттестации экзамен в 6 семестре.

Форма промежуточной аттестации (1 и 2 рубежный контроль) <u>проводится</u> путем выполнения самостоятельного задания.

8.2. Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица7

Оценка по буквенной системе	Диапазон соответствующих наборных баллов	Численное выражение оценочного балла	Оценка по традиционной системе
A	10	95-100	Omayyyy
A	9	90-94	Отлично
B +	8	85-89	
В	7	80-84	Хорошо
B-	6	75-79	
C +	5	70-74	
C	4	65-69	
C-	3	60-64	Vyanyamnamyyya
D+	2	55-59	Удовлетворительно
D	1	50-54	
Fx	0	45-49	Политористромитом из
F	0	0-44	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.