МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Гидродинамика»
Направление 03.03.02 - «Физика»
Профиль подготовки - «Общая физика»
Форма подготовки – очная
Уровень подготовки – бакалавр

Рабочая программа требованиями федерального составлена соответствии c В государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ от 07.08.2020г. №891.

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению (для общепрофессиональных и профессиональных дисциплин);
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от 28 августа 2024г.

Рабочая программа утверждена УМС Естественнонаучного факультета, протокол № 1 от 29 августа 2024г.

Рабочая программа утверждена Ученым советом Естественнонаучного факультета, протокол № <u>1 от 30. 08. 2024г.</u>

Заведующий кафедрой к.ф.-м.н., доцент

Гулбоев Б.Дж.

Зам. председатель УМС факультета

He B

Халимов И.И.

Разработчик: к.ф.-м.н., доцент

Махмадбегов Р.С.

Разработчик от организации:

Акдодов Д.М.

Расписание занятий дисциплины

Таблица1

					1 11 01 11 11 11 11 11
Ф.И.О.		Аудиторные занятия	[Приём	Место
преподавателя	лекция	Практические	Лаборатор	CPC	работы
		занятия (КСР, лаб.)	ная		преподават
			занятия		еля
Махмадбегов Р.С.	Четверг	Четверг		Среда	ЕНФ, РТСУ

1. ЦЕЛИ, ЗАДАЧИ И ТРЕБОВАНИИ К ИЗУЧЕНИЯ ДИСЦИПЛИНЫ 1.1. Цели изучения дисциплины

Дисциплина представляет собой одну из важных общепрофессиональных дисциплин при подготовке бакалавров по направлению 03.03.02 - физика. Изучение дисциплины базируется на материале предшествующих естественно-научных и общепрофессиональных дисциплин, такие как механика, молекулярная физика, векторного и тензорного анализа, механика сплошных сред и других математических дисциплин. Целью изучения дисциплины является формирование у студентов основы системы знаний о механике сплошной среды и умений решать фундаментальные и прикладные задачи гидрогазодинамики. Программа курса разработана в соответствие с требованиями Государственного образовательного стандарта высшего профессионального образования по специальности 03.03.02 "Физика" утвержденного приказом Министерства образования и науки РФ от 07.08.2020г. №891.

1.2. Задачи изучения дисциплины

Главной задачей курса «Гидродинамика», является расширение фундаментальной базы физических знаний студентов, на основе которой в дальнейшем можно развивать более глубокое и детализированное изучение в области физика сплошных сред. В результате изучения дисциплины студент должен приобрести знания, умения и навыки, необходимые для его профессиональной деятельности по направлению физика.

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины «Гидродинамика», направлен на формирование следующих общекультурных и профессиональных компетенций, необходимых для осуществления профессиональной деятельности:

Таблина 2

код	Формируемая компетенция	Этапы формир ования компете нции	Содержание этапа формирования компетенции	Вид оценочн ого средств а
ПК- 2	Способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной	Начальн ый этап (знания)	Знает: - основных методов теоретической и экспериментальной физики, экспериментальные основы научных приборов и методика проведения современного научного эксперимента в различных областях физики современные методы измерений и способы проведение эксперимента по определение основных физических величин во всех разделах физики, такие как оптик и спектроскопия, физика твердого тела, ядерной физики и т.д основные достижения, современные тенденции и современную экспериментальную базу в области физики.	Коллокв иум
	базы (в том	Продвин	Умеет:	Разноур

числе сложного	утый	- проводить измерения физических характеристик	овневые
физического	этап	объектов и осуществлять приготовление образцов	задачи и
-			
оборудования)	(навыки)	и подготовку приборов для проведения	задания
И		измерений.	
информационн		- обрабатывать полученные экспериментальные	
ых технологий		данные и проводить необходимые	
с учетом		математические преобразования физических	
отечественного		проблем, а также делать оценки по порядку	
и зарубежного		величины.	
опыта		Владеет:	Коллокв
		- навыками работы с современными	иум
		экспериментальными научными оборудованиями	
		и компьютерного управления современными	
		экспериментальными установками с	
		использованием специального программного	
	Заверша		
	ющий	обеспечения;	
	этап	- компьютерной обработки полученных	
	(умения)	экспериментальных данных и использования	
	(ymenn)	электронно-вычислительной техники для	
		расчетов и презентации полученных научных	
		результатов.	
		- грамотного использования физического	
		научного языка для оформление ВКР, проектов и	
		т.п.	
		1.11.	

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

- 2.1. Дисциплина «Гидродинамика», относится к первому блоку вариативной части профессионального цикла Б1.В.ДВ.3 учебного плана, изучается в 7 семестре. При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплине физики и математики из 1-3 курсов.
- 2.2. К исходным требованиям, необходимым для изучения дисциплины «Гидродинамика» относятся знания, умения и виды деятельности, сформированные в процессе изучения дисциплин механика, молекулярная физика, векторного и тензорного анализа, механика сплошных сред и других математических дисциплин.

3. СТРУКТУРА И СОДЕРЖАНИЕ КУРСА, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем дисциплины составляет 3 зачетных единиц, всего 108 часов, из которых: лекции — 16 часов (первой семестр), практические занятия — 16 часов (шестой семестр), лабораторная работа — 0 часов (шестой семестр), КСР — 16 часов (шестой семестр), самостоятельная работа — 60 часов, всего часов аудиторной нагрузки — 48 часов. Зачет — 7 семестр.

3.1. Структура и содержание теоретической части курса (16ч)

Тема1. Введение. Основные приближения гидродинамики-2ч.

(Уравнение неразрывности в гидродинамике)

Тема 2. Идеальная жидкость-6ч.

(Уравнение Эйлера. Гидростатика. Теорема Бернулли. Теорема Томсона (Кельвина). Применение теорем Бернулли и Томсона в гидродинамике идеальной жидкости. Потенциальное течение идеальной жидкости. Парадокс Даламбера — Эйлера. Нестационарное течение идеальной жидкости. Интеграл Коши — Лагранжа. Ускоренное движение частицы в идеальной жидкости. Закон присоединенной массы. Гравитационные волны в идеальной жидкости.)

Тема 3. Вязкая жидкость -4ч

(Тензор вязких напряжений. Уравнение Навье — Стокса. Граничные условия к уравнению Навье — Стокса. Плоское течение Куэтта. Плоское течение Пуазейля. Течение жидкости по наклонной плоскости. Течение Пуазейля в цилиндрической трубе. Течение Куэтта между вращающимися цилиндрами. Колебательные движения в вязкой жидкости. Число Рейнольдса.

Приближение малых чисел Рейнольдса. Задача Стокса. Эффективная вязкость суспензии. Большие числа Рейнольдса. Пограничный слой.)

Тема 4. Турбулентность -2ч

(Изотропная однородная турбулентность. Теория Колмогорова — Обухова. Турбулентное течение вдоль твердой стенки. Логарифмический профиль скорости. Турбулентный пограничный слой. Турбулентное течение в трубах)

Тема 5. Звук. Вязкоупругость.- 2ч

(Уравнения линейной акустики. Плоские акустические волны. Распространение звуковых волн. Вязкоупругость)

Итого: 16 часа

3.2. Структура и содержание практической части курса (16 ч)

Цель практических занятий — способствовать лучшему усвоению и закреплению теоретических знаний, полученных из лекционного курса и изучения литературы.

Практические занятия состоят из трех частей — вводной, основной и заключительной.

Вводная часть занятия содержит формулировку его цели, ответы на вопросы студентов по домашнему заданию, контроль его выполнения в любой форме и обсуждение понятий, утверждений и методов, знание которых необходимо для продуктивной работы на занятии.

Основная часть занятия включает в себя обсуждение типовых задач по теме занятия, методов и их решения, а также самостоятельное решение задач под руководством и при необходимой помощи преподавателя. В основную часть занятия входит также обучение студентов умению проверять, анализировать и интерпретировать полученные результаты.

Заключительная часть занятия содержит анализ тех знаний и умений, которые осваивались на занятии и должны быть закреплены при выполнении домашнего задания. Полезно также обсудить, при изучении, каких разделов данного курса и других дисциплин эти знания и умения будут необходимы. Выдача заданий для самостоятельной работы студентов и подробные рекомендации по его выполнению.

Занятие 1. Уравнение непрерывности. Решение задач. – 2 час.

Занятие 2. Гидростатика. Решение задач. – 2 час.

Занятие 3. Идеальная жидкости. Решение задач. – 2 час.

Занятие 4. Идеальная жидкость. Решение задач – 2 час.

Занятие 5. Вязкая жидкость. Решение задач. – 2 час.

Занятие 6. Вязкая жидкость. Решение задач. – 2 час.

Занятие 7. Турбулентность. Решение задач. – 2 час.

Занятие 8. Звук и вязкоупругость. Решение задач – 2 часа.

Итого: 16 часов

3.4 Программа лабораторного практикума (0 ч)

(не рассматривается)

3.3. Структура и содержание КСР (16 ч)

Занятие 1. Контроль самостоятельных работ на тему: Уравнение неразрывности в гидродинамике – 2 час.

Занятие 2. Контроль самостоятельных работ на тему: Теорема Бернулли. Теорема Томсона (Кельвина) – 2 час.

Занятие 3. Контроль самостоятельных работ на тему: Парадокс Даламбера — Эйлера. Нестационарное течение идеальной жидкости – 2 час.

Занятие 4. Контроль самостоятельных работ на тему: Закон присоединенной массы. Гравитационные волны в идеальной жидкости -2 час.

Занятие 5. Контроль самостоятельных работ на тему: Плоское течение Куэтта. Плоское течение Пуазейля. Течение жидкости по наклонной плоскости. Течение Пуазейля в цилиндрической трубе. Течение Куэтта между вращающимися цилиндрами -2 час.

Занятие 6. Контроль самостоятельных работ на тему: Приближение малых чисел Рейнольдса. Задача Стокса. Эффективная вязкость суспензии. Большие числа Рейнольдса. Пограничный слой – 2 час.

Занятие 7. Контроль самостоятельных работ на тему: Турбулентное течение вдоль твердой стенки. Логарифмический профиль скорости. Турбулентный пограничный слой. Турбулентное течение в трубах. -2 час.

Занятие 8. Контроль самостоятельных работ на тему: Механика жидкостей и газов (1. Давление в потоке воды, протекающей по трубе переменного сечения. 2. Ламинарное течение жидкости. 3. Турбулентное течение жидкости. 3. Лобовое сопротивление тел различной формы. 4. Подъемная сила крыла самолета). -2 час.

Итого: 16 часов

Таблица 3.

								таолица 3
3.0	.		-	ебной	_			Кол-во
№ Раздел в п/п Дисциплины				мосто			Лит-	баллов в
п/п	, , , , , , , , , , , , , , , , , , ,			студе			pa	неделю
				сость (
	Наименование тем	Лек	Hp	Ha6	KCI	CPC		
	Семест		1	1		1.		T
1	Введение. Основные приближения	2				2	1-8	
	гидродинамики							12,5
2	Уравнение непрерывности. Решение задач.		2			2		
3	Уравнение неразрывности в гидродинамике				2	2		12,5
4	Идеальная жидкость. Уравнение Эйлера.	2				2	1-8	
5	Гидростатика. Решение задач.		2			2	1-8	12,5
6	Теорема Бернулли. Теорема Томсона				2	2		12,5
	(Кельвина).					1		12,5
7	Применение теорем Бернулли и Томсона в	2				2	1-8	
	гидродинамике идеальной жидкости.							
	Потенциальное течение идеальной							12,5
	жидкости.							-
8	Идеальная жидкости. Решение задач.		2			2	1-8	
9	Парадокс Даламбера — Эйлера.				2	2	1-8	
	Нестационарное течение идеальной							10.5
	жидкости.					-		12,5
10	Интеграл Коши — Лагранжа. Ускоренное	2				2	1-8	
1.1	движение частицы в идеальной жидкости.						1.0	10.5
11	Идеальная жидкости. Решение задач.		2			2	1-8	12,5
12	Закон присоединенной массы.				2	2	1-8	10.5
	Гравитационные волны в идеальной							12,5
1.2	жидкости	2				2	1.0	
13	Тензор вязких напряжений. Уравнение	2				2	1-8	
	Навье — Стокса. Граничные условия к							12,5
1.4	уравнению Навье — Стокса.		2			2	1.0	
14	Вязкая жидкость. Решение задач		2		2	2	1-8	
15	Плоское течение Куэтта. Плоское течение				2	2	1-8	
	Пуазейля. Течение жидкости по наклонной плоскости. Течение Пуазейля в							
	плоскости. Течение Пуазейля в цилиндрической трубе. Течение Куэтта							12,5
	1 10							12,3
16	между вращающимися цилиндрами. Колебательные движения в вязкой	2				2	1-8	-
10	жидкости. Число Рейнольдса.						1-0	
17	Вязкая жидкость. Решение задач		2			2	1-8	12,5
18	Приближение малых чисел Рейнольдса.					2	1-8	12,5
10	Задача Стокса. Эффективная вязкость					 	10	1.5
	суспензии. Большие числа Рейнольдса.							12,5
	Пограничный слой							

19	Изотропная однородная турбулентность.	2			2	1-8	
	Теория Колмогорова — Обухова.						12,5
20	Турбулентность. Решение задач.		2		2	1-8	
21	Турбулентное течение вдоль твердой стенки. Логарифмический профиль скорости. Турбулентный пограничный слой. Турбулентное течение в трубах			2	2	1-8	12,5
22	Уравнения линейной акустики. Плоские акустические волны.	2			2	1-8	
23	Звук и вязкоупругость. Решение задач		2		2	1-8	12,5
24	Распространение звуковых волн. Вязкоупругость			2	2	1-8	12,5
		16	16	16	60		200

3.4. Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль. Студенты <u>1 курсов</u>, обучающиеся по кредитно-рейтинговой системе обучения, могут получить максимально возможное количество баллов - 300. Из них на текущий и рубежный контроль выделяется 200 баллов или 49% от общего количества.

На итоговый контроль знаний студентов выделяется 51% или 100 баллов.

Порядок выставления баллов: 1-й рейтинг (1-7 недели до 12,5 баллов+12,5 баллов (8 неделя — Рубежный контроль №1) = 100 баллов), 2-й рейтинг (9-15 недели до 12,5 баллов+12,5 баллов (16 неделя — Рубежный контроль №2) = 100 баллов), итоговый контроль 100 баллов.

К примеру, за текущий и 1-й рубежный контроль выставляется 100 баллов: лекционные занятия -21 балл, за практические занятия (КСР, лабораторные) -31,5 балл, за СРС -17,5 баллов, требования ВУЗа -17,5 баллов, рубежный контроль -12,5 баллов.

В случае пропуска студентом занятий по уважительной причине (при наличии подтверждающего документа) в период академической недели деканат факультета обращается к проректору по учебной работе с представлением об отработке студентом баллов за пропущенные дни по каждой отдельной дисциплине с последующим внесением их в электронный журнал.

Итоговая форма контроля по дисциплине проводится как в форме тестирования, так и в традиционной (устной) форме. Тестовая форма итогового контроля по дисциплине предусматривает: для естественнонаучных направлений — 10 тестовых вопросов на одного студента, где правильный ответ оценивается в 10 баллов. Тестирование проводится в электронном виде, устный экзамен на бумажном носителе с выставлением оценки в ведомости по аналогичной системе с тестированием.

Контроль усвоения студентом каждой темы осуществляется в рамках балл-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль.

Таблица 4.

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практических (семинарских) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Bcero
--------	---	--	---	---	-------

1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр для студентов 1-х курсов:

$$MB = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0,49 + 3u \cdot 0,51$$
,

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и практическую составляющие обучения. При этом обеспечивается упорядочивание теоретических знаний, что в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная

работа планируется и организуется с целью углубления и расширения теоретических знаний, формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Гидродинамика» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- активная работа на лекциях
- активная работа на практических занятиях
- контрольно-обучающие программы тестирования (КОПТ).
- выполнение лабораторных работ.
- выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- проработка лекционного материала,
- подготовка к лабораторным занятиям,
- подготовка к практическим занятиям,
- подготовка к аудиторным контрольным работам,
- выполнение ИДЗ,
- подготовка к защите ИДЗ,
- подготовка к экзамену или зачету.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Гидродинамика» включает в себя:

Таблина 5

No	Объ	Тема самостоятельной работы	Форма и вид	Форма
Π/Π	ем		CPC	контрол
	CPC			Я
	в ч.			
1	5	Введение. Основные приближения гидродинамики.	Письменное	Защита
		Уравнение неразрывности в гидродинамике	решение	работы
			упражнений	
			и задач	
2	20	Идеальная жидкость. Уравнение Эйлера. Гидростатика.	(индивидуал	Защита
		Теорема Бернулли. Теорема Томсона (Кельвина).	ьные	работы
		Применение теорем Бернулли и Томсона в гидродинамике	домашние	
		идеальной жидкости. Потенциальное течение идеальной	задание)	
		жидкости. Парадокс Даламбера — Эйлера. Нестационарное		
		течение идеальной жидкости. Интеграл Коши — Лагранжа.		
		Ускоренное движение частицы в идеальной жидкости.		

Mmo	го 62 ч		п эйди г	<u> </u>
5	10	Звук. Уравнения линейной акустики. Плоские акустические волны. Распространение звуковых волн. Вязкоупругость.	Письменное решение упражнений и задач	Защита работы
4	10	Турбулентность. Изотропная однородная турбулентность. Теория Колмогорова — Обухова. Турбулентное течение вдоль твердой стенки. Логарифмический профиль скорости. Турбулентный пограничный слой. Турбулентное течение в трубах	(индивидуал ьные домашние задание)	Защита работы
3	15	Закон присоединенной массы. Гравитационные волны в идеальной жидкости. Вязкая жидкость. Тензор вязких напряжений. Уравнение Навье — Стокса. Граничные условия к уравнению Навье — Стокса. Плоское течение Куэтта. Плоское течение Пуазейля. Течение жидкости по наклонной плоскости. Течение Пуазейля в цилиндрической трубе. Течение Куэтта между вращающимися цилиндрами. Колебательные движения в вязкой жидкости. Число Рейнольдса. Приближение малых чисел Рейнольдса. Задача Стокса. Эффективная вязкость суспензии. Большие числа Рейнольдса. Пограничный слой.	Письменное решение упражнений и задач	Защита работы

5.СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО- МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Седов Л. И. Механика сплошной среды: Т. 2: [в 2 томах](Москва: Наука).
- 2. Лойцянский Л. Г. Механика жидкости и газа: учебник для вузов(Москва: Дрофа).
- 3. Черняк В. Г., Суетин П. Е. Механика сплошных сред: учеб. пособие для вузов(Москва: ФИЗМАТЛИТ).
- 4. Ландау Л. Д., Лифшиц Е. М., Питаевский Л. П. Теоретическая физика: Т. VI. Гидродинамика: учеб. пособие : в 10-ти т.(Москва: ФИЗМАТЛИТ).
- 5. Седов Л. И. Механика сплошной среды: Т. 1: [в 2 томах] (Москва: Наука).
- 6. Прандтль Л., Вольперт Г.А. Гидроаэромеханика(Ижевск: НИЦ "Регулярная и хаотическая динамика").
- 7. Веренич И. А. Механика жидкости и газа (гидродинамика): учеб.-метод. пособие к практ. занятиям(Минск: БНТУ).
- 8. Абрамович Г. Н. Прикладная газовая динамика: Ч. 1: в 2-х ч. : учеб. рук. для втузов(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 9. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений (Москва: Физматлит).
- 10. Славин В.С., Лобасова М.С., Миловидова Т. А. Механика жидкости и газа: методические указания к решению задач для студентов напр. подготовки дипломированных специалистов 651100 "Техническая физика" (спец. 070700)(Красноярск: ИПЦ КГТУ).
- 11. Миловидова Т. А., Лобасова М. С. Механика жидкости и газа: методические указания по решению задач для студентов укрупненной группы напр. подготовки спец. 140000 всех форм обучения(Красноярск: СФУ).

Дополнительная литература

- 1. Иродов И. Е. Задачи по общей физике [Текст] : учеб. пособие / И. Е. Иродов. 12-е изд., стер. Санкт-Петербург; Москва; Краснодар: Лань, 2007. 416 с. (101 экз)
- 2. Савельев И.В. Курс физики. В 3-х тт. Т.1. Механика. Молекулярная физика. 4-е изд. / И.В. Савельев. СПб.: Изд-во «Лань», 2008. 352 с.

- 3. Зисман Г.А. Курс общей физики. В 3 т. : учеб. пособие. Т. 1. Механика. Молекулярная физика. Колебания и волны / Г. А. Зисман, О. М. Тодес. 7-е изд., стер. Санкт-Петербург ; Москва ; Краснодар : Лань, 2007. 339 с.
- 4. Волькенштейн В.С. Сборник задач по общему курсу физики / В.С. Волькенштейн. 3-е изд., испр.и доп. СПб. : Книжный мир, 2003. 328 с.

Интернет-ресурсы:

- 1. https://biblio-online.ru
- 2. http://webmath.exponenta.ru.
- 3. https://urait.ru/viewer/teoreticheskaya-mehanika

6.МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой -4 час в неделю;

Подготовка к практическому занятию – 3 час;

Подготовка к экзамену – 1 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по гидродинамике.
- 2. При подготовке к лабораторным занятиям следующего занятия, необходимо сначала осваивать теоретической части лабораторной работы, что студент смог бы выполнить практическую часть этой лабораторной работы.
- 3. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

Учебно-методический комплекс (УМК) призван помочь студенту понять специфику изучаемого материала, а в конечном итоге — максимально полно и качественно его освоить.

В первую очередь студент должен осознать предназначение комплекса: его структуру, цели и задачи. Для этого он знакомится с преамбулой, оглавлением УМК, говоря иначе, осуществляет первичное знакомство с ним.

Далее студент внимательно прочитывает и осмысливает тот раздел, задания которого ему необходимо выполнить.

Выполнение *всех* заданий, определяемых содержанием курса, предполагает работу с научными исследованиями (монографиями и статьями). Перед работой с научными источниками студенту следует обратиться к основной учебной литературе – учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам — справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их материалов позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение контрольной работы и т.д.).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «Гидродинамика» оснащены проектором для проведения презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

8.1. Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Форма итоговой аттестации зачет в 7 семестре.

Форма промежуточной аттестации (1 и 2 рубежный контроль) проводится путем выполнения самостоятельного задания.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица 6

Оценка по буквенной системе	Диапазон соответствующих наборных баллов	Численное выражение оценочного балла	Оценка по традиционной системе
A	10	95-100	0
A	9	90-94	Отлично
B+	8	85-89	
В	7	80-84	Хорошо
B-	6	75-79	-
C +	5	70-74	
C	4	65-69	
C-	3	60-64	Vioriation
D+	2	55-59	Удовлетворительно
D	1	50-54	
Fx	0	45-49	Hayyan yarnanyara ya ya
F	0	0-44	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.