МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ОБРАЗОВАНИЯ
«РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

Естественнонаучный факультет

Кафедра математики и физики

«УТВЕРЖДАЮ»

« <u>38 » общено</u> 2023 г.

Зав. кафедрой <u>к.ф.м.н., доцент</u>

Ф.И.О. <u>Гоибов Д.С.</u>

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Математическая статистика 01.03.01. - Математика профиль «Общая математика»

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Математическая статистика

	Контролируемые разделы, темы		Оценочные средства		
№ п/п		Формируемые компетенции	Количество	1	
			тестовых	средства	
			заданий для экзамена/ зачета	Вид	Коли чест во
1	Общий обзор случайных величин	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
2	Система случайных величин	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
3	Числовые характеристики случайных величин	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
4	Элементы теории корреляции. Уравнения регрессии	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
5	Элементы математической статистики	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
6	Генеральная и выборочная совокупности. Выборочный метод	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
7	Статистическое распределение выборки. Полигон, гистограмма	ОПК-1 ОПК-2 ПК-4 ПК-5	5	Выступление Коллоквиум Дискуссия	2 2 2
8	Статистические оценки параметров распределения	ОПК-1 ОПК-2 ПК-4 ПК-5	7	Выступление Коллоквиум Дискуссия	2 2 2
9	Статистическая проверка статистических гипотез	ОПК-1 ОПК-2 ПК-4 ПК-5	8	Выступление Коллоквиум Дискуссия	2 2 2
Bcero:			50		54

ТЕМЫ ВЫСТУПЛЕНИЯ ДЛЯ СТУДЕНТОВ

Формируемые компетенции

- **ОПК-1** готовностью использовать фундаментальные знания в области аналитической геометрии в будущей профессиональной деятельности
- **ОПК-2** способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей
- **ПК-4** способностью осуществлять педагогическую деятельность на основе специальных научных знаний по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования
- **ПК-5** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами

Выступление – речь, лекция, доклад, заявление и т.п., которые сообщаются кем-либо в устной форме.

Выступление студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
 - углубления и расширения теоретических знаний;
 - формирования умений использовать справочную и специальную литературу;
 - развития познавательных способностей и активности студентов:
 - творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развития исследовательских умений.
 - 1. Предмет теории вероятностей. Классификация случайных событий.
- 2. Классическое определение вероятности случайных событий. Элементы комбинаторики.
- 3. Алгебра событий. Теорема сложения вероятностей для совместных и несовместных событий.
- 4. Условная вероятность. Независимые и зависимые события. Теорема умножения вероятностей для зависимых и независимых событий.
 - 5. Формула полной вероятности.
 - 6. Формула Байеса (формула переоценки вероятности гипотез).
 - 7. Схема Бернулли, формула Бернулли.
- 8. Дискретные случайные величины. Числовые характеристики дискретных случайных величин.
 - 9. Функция распределения вероятностей случайной величины и ее свойства.
- 10. Плотность распределения вероятностей непрерывных случайных величин и ее свойства. Взаимосвязь между функцией распределения и плотностью распределения.
 - 11. Числовые характеристики непрерывных случайных величин.
 - 12. Нормальное распределение, его свойства.
- 13. Генеральная совокупность и случайная выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения.
- 14. Точечные оценки параметров случайной величины. Выборочное среднее, выборочная дисперсия.
 - 15. Интервальные оценки параметров случайной величины.
 - 16. Понятие о статистической проверке гипотез.
- 17. Задача кластерного анализа и ее геометрическая интерпретация. Основные меры сходства между объектами многомерной выборки.

18. Основные методы кластерного анализа. Способы представления результатов кластерного анализа. Наиболее важные характеристики кластерной структуры.

Требование к выступлению:

- точность ответа на поставленный вопрос;
- формулировка целей и задач работы;
- раскрытие (определение) рассматриваемого понятия (определения, проблемы, термина);
 - четкость структуры работы;
 - самостоятельность, логичность изложения;
 - наличие выводов, сделанных самостоятельно.

Критерии оценки по выступлению:

Отметка «5». Выступление выполнено в полном объеме с соблюдением необходимой последовательности. Работа соответствует требованию.

Отметка «**4**». Выступление отвечает предъявленным требованиям. Допускаются отклонения от необходимой последовательности выполнения, не влияющие на правильность конечного результата.

Отметка «3». Учащиеся показывают знания не в полной мере и испытывают затруднение при решении задач.

Отметка «2» выставляется в том случае, когда учащиеся не подготовлены к выполнению этой работы.

ЗАДАНИЯ ДЛЯ КОЛЛОКВИУМА

Формируемые компетенции

- **ОПК-1** готовностью использовать фундаментальные знания в области аналитической геометрии в будущей профессиональной деятельности
- **ОПК-2** способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей
- **ПК-4 с**пособностью осуществлять педагогическую деятельность на основе специальных научных знаний по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования
- **ПК-5** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами

Коллоквиум – форма учебного занятия, понимаемая как беседа преподавателя с учащимися с целью активизации знаний.

Коллоквиум представляет собой мини-экзамен, проводимый с целью проверки и оценки знаний студентов после изучения большой темы или раздела в форме опроса или опроса с билетами.

Коллоквиум может проводиться в устной или письменной форме.

- 1. В урне 6 белых, 4 чёрных и 5 красных шаров. Из урны наугад вынимают 5 шаров. Найти вероятность того, что среди них окажется 2 красных и 1 чёрный шар.
- 2. Точка брошена внутрь круга радиуса 3 см. Найти вероятность того, что она будет находиться от центра на расстоянии меньшем, чем 2.
- 3. Нестандартных изделий в партии 5%. Какова вероятность того, что два наугад взятых изделия будут нестандартными?
- 4. Из множества 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 наудачу выбрано число. Какова вероятность того, что это число является делителем 16?
- 5. Швейные заготовки поступают из двух цехов: 70% из первого и 30% из второго. Заготовки первого цеха содержат 10% брака, второго 20%. Найти вероятность того, что наугад взятая заготовка без дефектов.

- 6. Имеются две урны. В первой находятся 1 белый шар и 3 чёрных, во второй 3 белых и 2 чёрных. Из каждой урны наугад извлекают по одному шару, после чего сравнивают их цвета. Найти вероятность того, что цвета вытащенных шаров не совпадают.
- 7. В группе из 200 мужчин и 300 женщин 5% мужчин и 3% женщин страдают бронхитом. Наугад выбранное для обследования лицо страдает бронхитом. Какова вероятность того, что это женшина?
- 8. Вероятность обнаружения бракованного изделия в отдельном испытании равна 0,25. Какова вероятность того, что при четырёхкратном испытании стандартное изделие появится не менее трёх раз?
- 9. Брошены две игральные кости. Найти вероятность того, что хотя бы на одной из костей выпало меньше 3 очков.
- 10. Вероятность события в каждом из 5 испытаниях равна 0,8. Найти вероятность того, что это событие появится в этих испытаниях ровно 3 раза.
- 11. Пусть вероятность того, что покупателю овощного магазина потребуется картошка, равна 0,2. Найти вероятность того, что из 5 покупателей более 4 потребуют картошку.
 - 12. Если события A и B совместны, тогда P(A + B).
- 13. События A_1 A_2 и A_3 взаимно независимы и $P(A_k) = 0,2^k k = 1, 2, 3$. Найти вероятность события A_1 A_2 A_3 .
- 14. В бригаде 3 женщины и 3 мужчин. Среди членов бригады разыгрывается 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчин?
- 15. Из отрезка [0; 2] наудачу выбраны два числа x и y. Найти вероятность того, что эти числа удовлетворяют неравенствам $x^2 < y < x$
- 16. На пяти карточках написано по одной цифре из набора 2, 4, 6, 8 и 9 наугад выбираются одна за другой две карточки. Какова вероятность того, что число на второй карточке больше, чем на первой?
- 17. В одном ящике 4 белых и 4 чёрных шарика. Во втором 5 белых и 3 чёрных. Из каждого ящика наугад вынимается по одному шарику. Чему равна вероятность того, что оба шарика окажутся белыми?
- 18. Два автомата производят детали, которые поступают на общий конвейер. Вероятность получения нестандартной детали на первом автомате равна 0,075, а на втором 0,09. Производительность второго автомата вдвое больше, чем первого. Найти вероятность того, что наугад взятая с конвейера деталь нестандартна.

Критерии оценки коллоквиума:

Оценка «5» - глубокое и прочное усвоение материала. Умение доказать свое решение. Демонстрация обучающимся знаний в объеме пройденной программы. Воспроизведение учебного материала с требуемой степенью точности.

Оценка «4» - наличие несущественных ошибок, уверенно исправляемых обучающимся после дополнительных и наводящих вопросов. Демонстрация обучающимся знаний в объеме пройденной программы. Четкое изложение учебного материала.

Оценка «3» - наличие несущественных ошибок в ответе, не исправляемых обучающимся. Демонстрация обучающимся недостаточно полных знаний по пройденной программе.

Оценка «2» - не знание материала пройденной темы. При ответе возникают серьезные ошибки.

ЗАДАНИЯ ДЛЯ ДИСКУССИИ

Формируемые компетенции

ОПК-1 – готовностью использовать фундаментальные знания в области аналитической геометрии в будущей профессиональной деятельности

ОПК-2 — способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей

- **ПК-4 с**пособностью осуществлять педагогическую деятельность на основе специальных научных знаний по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования
- **ПК-5** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами

Дискуссия — обсуждение спорного вопроса, проблемы; разновидность спора, направленного на достижение истины и использующего только корректные приёмы ведения спора.

- 1. Плотность распределения вероятностей непрерывных случайных величин и ее свойства. Взаимосвязь между функцией распределения и плотностью распределения.
 - 2. Числовые характеристики непрерывных случайных величин.
 - 3. Нормальное распределение, его свойства.
- 4. Генеральная совокупность и случайная выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения.
- 5. Точечные оценки параметров случайной величины. Выборочное среднее, выборочная дисперсия.
 - 6. Интервальные оценки параметров случайной величины.
 - 7. Понятие о статистической проверке гипотез.
- 8. Задача кластерного анализа и ее геометрическая интерпретация. Основные меры сходства между объектами многомерной выборки.
- 9. Основные методы кластерного анализа. Способы представления результатов кластерного анализа. Наиболее важные характеристики кластерной структуры.
- 10. Задача множественной корреляции. Парные коэффициенты корреляции и корреляционная матрица.
- 11. Частные и множественные коэффициенты корреляции; проверка их статистической значимости. Доверительные интервалы для значимых коэффициентов корреляции.
- 12. Множественный коэффициент ранговой корреляции (коэффициент конкордации) и проверка его статистической значимости.
- 13. Модель множественной линейной регрессии. Статистические оценки параметров этой модели методом наименьших квадратов.
- 14. Проверка согласованности модели множественной линейной регрессии с результатами наблюдений.
 - 15. Задача многофакторного дисперсионного анализа.
- 16. Однофакторный дисперсионный анализ. Основное тождество однофакторного дисперсионного анализа. Решение задачи однофакторного дисперсионного анализа.
- 17. Схемы двух и трехфакторного дисперсионного анализа. Оценка влияния одновременно действующих факторов.
- 18. Проверка статистической значимости различия средних и выделение значимых факторов и взаимодействий.

Критерии оценки дискуссии:

- 1. Оценка «отлично» выставляется студенту, если он активно принимал участие в дискуссии и отвечал на вопросы полным ответом с доказательством и решением безошибочно.
- 2. Оценка «хорошо» выставляется студенту, если он активно учувствовал в дискуссии, но у него были несущественные ошибки, которые он потом исправлял.
- 3. Оценка «удовлетворительно» выставляется студенту, если он не учувствовал в дискуссии добровольно, а при вызывании к доске отвечал не в полной мере.
- 4. Оценка «неудовлетворительно» выставляется студенту, если он не учувствовал в дискуссии, а при вызывании к доске не мог ничего ответить.

ТЕСТОВЫЕ ЗАДАНИЯ ИТОГОВОГО КОНТРОЛЯ ПО ДИСЦИПЛИНЕ МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (ЗАЧЕТ)

ОПК-1 — готовностью использовать фундаментальные знания в области аналитической геометрии в будущей профессиональной деятельности

- **ОПК-2** способность использовать в профессиональной деятельности базовые знания фундаментальных разделов математики, создавать математические модели типовых профессиональных задач и интерпретировать полученные результаты с учетом границ применимости моделей
- **ПК-4** способностью осуществлять педагогическую деятельность на основе специальных научных знаний по профильным предметам (дисциплинам, модулям) в рамках программ основного общего и среднего общего образования
- **ПК-5** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами
 - 1. Предмет теории вероятностей. Классификация случайных событий.
- 2. Классическое определение вероятности случайных событий. Элементы комбинаторики.
- 3. Алгебра событий. Теорема сложения вероятностей для совместных и несовместных событий.
- 4. Условная вероятность. Независимые и зависимые события. Теорема умножения вероятностей для зависимых и независимых событий.
- 5. Формула полной вероятности.
- 6. Формула Байеса (формула переоценки вероятности гипотез).
- 7. Схема Бернулли, формула Бернулли.
- 8. Дискретные случайные величины. Числовые характеристики дискретных случайных величин.
 - 9. Функция распределения вероятностей случайной величины и ее свойства.
- 10. Плотность распределения вероятностей непрерывных случайных величин и ее свойства. Взаимосвязь между функцией распределения и плотностью распределения.
 - 11. Числовые характеристики непрерывных случайных величин.
 - 12. Нормальное распределение, его свойства.
- 13. Генеральная совокупность и случайная выборка. Вариационный ряд. Гистограмма, эмпирическая функция распределения.
- 14. Точечные оценки параметров случайной величины. Выборочное среднее, выборочная дисперсия.
 - 15. Интервальные оценки параметров случайной величины.
 - 16. Понятие о статистической проверке гипотез.
- 17. Задача кластерного анализа и ее геометрическая интерпретация. Основные меры сходства между объектами многомерной выборки.
- 18. Основные методы кластерного анализа. Способы представления результатов кластерного анализа. Наиболее важные характеристики кластерной структуры.
- 19. Задача множественной корреляции. Парные коэффициенты корреляции и корреляционная матрица.
- 20. Частные и множественные коэффициенты корреляции; проверка их статистической значимости. Доверительные интервалы для значимых коэффициентов корреляции.
- 21. Множественный коэффициент ранговой корреляции (коэффициент конкордации) и проверка его статистической значимости.
- 22. Модель множественной линейной регрессии. Статистические оценки параметров этой модели методом наименьших квадратов.
- 23. Проверка согласованности модели множественной линейной регрессии с результатами наблюдений.
 - 24. Задача многофакторного дисперсионного анализа.
- 25. Однофакторный дисперсионный анализ. Основное тождество однофакторного дисперсионного анализа. Решение задачи однофакторного дисперсионного анализа.
- 26. Схемы двух и трехфакторного дисперсионного анализа. Оценка влияния одновременно действующих факторов.

- 27. Проверка статистической значимости различия средних и выделение значимых факторов и взаимодействий.
 - 28. Способ сравнения модулей дифференциальных эффектов.
- 29. Постановка задачи факторного анализа. Основная математическая модель факторного анализа.
- 30. Представление исходных данных для проведения факторного анализа. Основные этапы решения задачи факторного анализа.
 - 31. Метод главных компонент. Оценка числа факторов.
 - 32. Метод ортогонального вращения факторов и его программное обеспечение.
- 33. Производится 3 выстрела с вероятностями попадания в цель, равными $p_1=0.84;\;p_2=0.53\;$ и $p_3=0.63\;$. Найти математическое ожидание общего числа попаданий.
- 34. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании четырёх игральных костей.
- 35. Вероятность отказа детали за время испытания на надежность равна 0,3. Найти математическое ожидание числа отказавших деталей, если испытанию будут подвергнуты 20 деталей.
- 36. Найти математическое ожидание произведения числа очков, которые могут выпасть при одном бросании трех игральных костей.
- 37. Найти математическое ожидание числа лотерейных билетов, на которые выпадут выигрыши, если приобретено 50 билетов, причем вероятность выигрыша по одному билету равна 0.02.
 - 38. Вероятность события, которое не может произойти:
- 39. Случайная величина имеет равномерное распределение на отрезке [1; 3]. Чему равно математическое ожидание такой случайной величины?
- 40. Случайная величина имеет равномерное распределение на отрезке [3; 5]. Чему равно математическое ожидание такой случайной величины?
- 41. Случайная величина имеет равномерное распределение на отрезке [4; 6]. Чему равно математическое ожидание такой случайной величины?
- 42. Случайная величина имеет равномерное распределение на отрезке [1; 3]. Чему равна дисперсия такой случайной величины?
- 43. Случайная величина имеет равномерное распределение на отрезке [2; 5]. Чему равна дисперсия такой случайной величины?
- 44. Случайная величина имеет равномерное распределение на отрезке [0; 6]. Чему равна дисперсия такой случайной величины?
- 45. Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратическое отклонение этой величины соответственно равны 40 и 10. Найти вероятность того, что X примет значение, принадлежащее интервалу (20, 50).
- 46. Случайная величина X распределена по нормальному закону. Математическое ожидание и среднее квадратическое отклонение этой величины соответственно равны 50 и 10. Найти вероятность того, что X примет значение, принадлежащее интервалу (30, 70).
- 47. Непрерывная случайная величина X задана плотностью распределения $f(x) = \sin x$ в интервале $(0, \pi/2)$; вне этого интервала f(x) = 0. Найти математическое ожидание случайной величины X.
- 48. Непрерывная случайная величина X задана плотностью распределения $f(x) = \cos x$ в интервале $(0, \pi/2)$; вне этого интервала f(x) = 0. Найти математическое ожидание случайной величины X.
- 49. Случайная величина X задана плотностью распределения $f(x) = Ce^{-x/2}, \ 0 \le x \le \ln 4$. Найти C.

50. Случайная величина X задана плотностью распределения $f(x) = Ce^{-x/4}$, $0 \le x \le \ln 16$. Найти C.

Итоговая форма контроля по дисциплине зачет проводится в устной форме.

Критерии оценки заданий

«отлично» - более 90 баллов; «хорошо» - более 75 баллов; «удовлетворительно» - менее 70 баллов; «неудовлетворительно» - менее 50 баллов.