МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН

МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ

«УТВЕРЖДАЮ»

«25 » aoiyemo, 2025 r.

Вав. кафедрой Гулбоев Б.,

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

«Механика сплошных сред»

Направление подготовки - 03.03.02 «Физика» Профиль подготовки «Общая физика» Форма подготовки - очная Уровень подготовки — бакалавриат

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Механика сплошных сред»

	TC		Оценочные средства		
№ п/п	Контролируемые разделы, темы, модули	Формируемые	Количество Другие оценочные средства		
		компетенции	тестовых заданий	Вид	Количество
	Предмет механики	ПК-2		Перечень	2
	сплошных сред.	ПК-5		вопросов для	
1.	Основные уравнения движения		12	коллоквиума,	
				разноуровнивые	1
	механических			задачи	
	систем				
	Переменные	ПК-2		Перечень	3
	Лагранжа и Эйлера	ПК-5		вопросов для	
2.			16	коллоквиума,	
				разноуровнивые	1
	Cyanaanyyyy	пи э		задачи	3
	Скорости и ускорения точек	ПК-2 ПК-5		Перечень	3
3.	сплошной среды	THC 5	14	вопросов для	
3.	1 / 1		1.	коллоквиума, разноуровнивые	1
				задачи	1
	Смещение	ПК-2		Перечень	2
	отдельных точек	ПК-5		вопросов для	
4.	малой частицы		11	коллоквиума,	
				разноуровнивые	1
				задачи	
	Деформация	ПК-2		Перечень	3
5.	жидкой частицы. Удлинения и	ПК-5	1.5	вопросов для	
5.	сдвиги		15	коллоквиума,	4
				разноуровнивые	1
	Тензор деформации	ПК-2		задачи Перечень	2
6.	и скоростей	ПК-5		вопросов для	_
	деформации		13	коллоквиума,	
				разноуровнивые	1
				задачи	
7.	Поле скоростей и	ПК-2		Перечень	3
	его основные	ПК-5	40	вопросов для	
	характеристики		10	коллоквиума,	
				разноуровнивые	1
8.	Силы,	ПК-2		задачи Перечень	2
	действующие в	ПК-5	13	вопросов для	
	сплошных средах			коллоквиума,	
	=	<u> </u>	<u> </u>	Rossion Rolly Was,	

				разноуровнивые задачи	1
9.	Необходимые уравнения движения сплошных сред	ПК-2 ПК-5	16	Перечень вопросов для коллоквиума, разноуровнивые задачи	1
Всего:			120		32

МОУ ВО «РОССИЙСКО-ТАДЖИКСКИЙ» (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ КОЛЛОКВИУМА

по дисциплине «Механика сплошных сред»

Формируемые компетенции

- **ПК-2** способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач;
- **ПК-5** способность использовать специализированные знания в области физики для освоения профильных физических дисциплин;

Коллоквиум – форма учебного занятия, понимаемая как беседа преподавателя с учащимися с целью активизации знаний.

Коллоквиум представляет собой мини-экзамен, проводимый с целью проверки и оценки знаний студентов после изучения большой темы или раздела в форме опроса или опроса с билетами.

- 1. Переменные Лагранжа и Эйлера
- 2. Скорости и ускорения точек сплошной среды.
- 3. Формулы, определяющие ускорения при малых значениях смещения.
- 4. Переход от переменных Эйлера к переменным Лагранжа.
- 5. Смещение отдельных точек малой частицы.
- 6. Деформация жидкой частицы. Удлинения.
- 7. Деформация жидкой частицы. Сдвиги.
- 8. Относительное удлинение линейного отрезка.
- 9. Деформация шаровой поверхности.
- 10. Главные оси деформации.
- 11. Вычисление компонентов деформации в преобразованной системе координат.
- 12. Тензор деформации.
- 13. Скорость точек малой частицы.
- 14. Тензор скоростей деформации.
- 15. Плотность среды.
- 16. Уравнение неразрывности.

- 17. Поле скоростей.
- 18. Линии тока.
- 19. Поток скорости (и массы).
- 20. Вывод уравнения неразрывности на основании понятия потока массы.
- 21. Циркуляция скорости и её связь с потоком завихренности.
- 22. Классы безвехривых и завихренных движений.
- 23. Поле завихренности.

Критерии оценки:

- оценка «отлично» выставляется студенту, если:
- 1) полно и аргументированно отвечает по содержанию задания;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно.
- оценка «**хорошо**», если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.
- оценка «удовлетворительно», если студент обнаруживает знание и понимание основных положений данного задания, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил; 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; 3) излагает материал непоследовательно и допускает ошибки.
- оценка «неудовлетворительно», если
- студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.
- оценка «зачтено» выставляется студенту, если

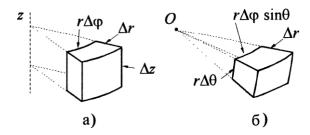
Полное верное решение. В логическом рассуждении и решении нет ошибок, задача решена рациональным способом. Получен правильный ответ. Ясно описан способ решения.

- оценка «не зачтено»

Решение неверное или отсутствует

МОУ ВО «РОССИЙСКО-ТАДЖИКСКИЙ» (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ

РАЗНОУРОВНЕВЫЕ ЗАДАЧИ


по дисциплине «Механика сплошных сред»

Формируемые компетенции

- **ПК-2** способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач;
- **ПК-5** способность использовать специализированные знания в области физики для освоения профильных физических дисциплин;
 - 1. Для поступательных движений твердого тела указать общий вид поля скорости в лагранжевом описании и общий вид закона движения.
 - 2. Движение среды происходит по закону $x_1 = \xi_1 + at\xi_2$, $x_1 = \xi_2 + bt\xi_1$, $x_1 = \xi_3$, a,b = const. Проверить, что числа (ξ,ξ,ξ_3) для индивидуальной частицы имеют смысл координат x_1,x_2,x_3 точки пространства, в которой она находилась в момент t = 0. Найти поля скорости и ускорения в лагранжевом описании. Какая частица в момент t_0 находится в точке пространства с координатами (x_{01},x_{02},x_{03}) .
 - 3. Движение среды происходит по закону $x = \xi (1+t\tau)$, $x = \xi (1+2t\tau)$, $x_3 = \xi_3(1+t^2/\tau^2)$, $\tau = const$. а) Найти поля скорости и ускорения в лагранжевом описании. б) Где находится в момент $t = 3\tau$ частица, которая в момент $t = \tau$ находилась в точке пространства с координатами (a,b,c).
 - 4. Найти поля скорости и ускорения в лагранжевом и эйлеровом описаниях, если движения среды происходит по закону а) трехосное растяжения тела $x=a(t)\xi$, $x=b(t)\xi$, $x=c(t)\xi$. б) простой сдвиг $x_1=\xi_1+b(t)\xi$, $x=\xi$, $x=\xi$. в) однородная деформация при 2 2 3 3 3 одновременном вращении тела с закрепленной точкой

 $x_i = A_{i1}(t)\xi_1 + A_{i2}(t)\xi_2 + A_{i3}(t)\xi_3$, $\det A_{ii} \neq 0$.

- скорости точек поверхности Σ , ограничивающей объем V , на внешнюю нормаль к Σ .
- 6. Написать закон сохранения массы для конечного неподвижного пространственного объема, через который протекает среда.
- 7. Вывести уравнения неразрывности в переменных Эйлера из закона сохранения массы индивидуального объема.
- 8. Вывести уравнения неразрывности в переменных Эйлера а) в цилиндрической системе координат б) в сферической системе координат, рассматривая баланс массы для элементарного координатного объема

9. Записать уравнения неразрывности в переменных Эйлера в произвольной криволинейной ортогональной системе координат, используя физические компоненты вектора скорости. Вывести из него уравнения неразрывности а) в цилиндрической системе координат, б) в сферической системе координат.

Критерии оценки:

- оценка «отлично» выставляется студенту, если:
- 1) полно и аргументированно отвечает по содержанию задания;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно.
- оценка «**хорошо**», если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.
- оценка «**удовлетворительно**», если студент обнаруживает знание и понимание основных положений данного задания, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил; 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; 3) излагает материал непоследовательно и допускает ошибки.

- оценка «неудовлетворительно», если

студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.

- оценка «зачтено» выставляется студенту, если

Полное верное решение. В логическом рассуждении и решении нет ошибок, задача решена рациональным способом. Получен правильный ответ. Ясно описан способ решения.

- оценка «не зачтено»

Решение неверное или отсутствует

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ

Дисциплина «Механика сплошных сред» Направление подготовки - 03.03.02 «Физика» Форма подготовки - очная Уровень подготовки - бакалавриат

Тестовые задания

Формируемые компетенции

ПК-2 - способность использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач;

ПК-5 - способность использовать специализированные знания в области физики для освоения профильных физических дисциплин; @1.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось абсцисс (Ox): $x = at + bt^2$, y = a + 2ct,

$$z = c$$

$$$A) \upsilon_{x} = a + 2bt;$$

$$$B) \upsilon_{x} = 2bt;$$

$$$C) \upsilon_{x} = a;$$

$$$D) \upsilon_{x} = a + bt;$$

$$$E) \upsilon_{x} = 2a;$$

@2.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось абсцисс (Ox): $x = 4a + bt^3$, y = a + 2ct,

```
$A) v^x = a + 2bt;
$B) v^x = 3bt^2;
C) v_x = a;
$D) v^x = a + bt;
$E) v_{x} = 2a;
@3.
@2.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 4at^2 + b, y = a + 2ct,
A) v_{x} = a + 2bt;
$B) v_{x} = 3bt^{2};
$C) v_{x} = 8at;
$D) v_{x} = a + bt;
$E) v = 2a;
@4
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 6at^2 + b, y = a + 2ct,
z = c
$A) v_{r} = a + 2bt;
$B) v_{x} = 3bt^{2};
C v_{r} = 8at;
$D) v_r = 12at;
$E) v = 2a;
@5.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 3t^2 + b, y = a + 2ct, z = c
$A) v_{x} = a + 2bt;
$B) v_{x} = 3bt^{2};
C v_{x} = 8at;
$D) v_{r} = 12at;
$E) v_{x} = 6t;
@6.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 5a + 2bt, y = a + 2ct,
z = c
$A) v_{x} = 2b;
$B) v_{x} = 3bt^{2};
```

 $C) v_{x} = 8at;$

```
$D) v_r = 12at;
$E) v = 6t;
@7.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 5a + 2t^2, y = a + 2ct,
z = c
$A) v_{x} = 2b;
$B) v_{x} = 4t;
C v_{r} = 8at;
$D) v_r = 12at;
$E) v = 6t;
@8
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 5a + 2t, y = a + 2ct, z = c
$A) v_{r} = 2b;
$B) v_{x} = 4t;
C) v_{y} = 2;
$D) v_{r} = 12at;
$E) v = 6t;
@9.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = 5a + 2ct, y = a + bt, z = c
$A) v_{r} = 2b;
$B) v_{x} = 4t;
C) v_{r} = 2;
$D) v_r = 2c;
$E) v = 6t;
@10.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось абсцисс (Ox): x = a + 2ct^2, y = a + bt, z = c
$A) v_x = 2b;
$B) v_{x} = 4t;
C v_r = 2;
$D) v_{r} = 2c;
$E) v^{\hat{}} = 4ct;
@11.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось ординат (Oy): x = a + 2ct^2, y = a + bt, z = c
```

\$A) $v_{y} = b$;

```
$B) v_y = 4t;

$C) v_y = 2;

$D) v_y = 2c;

$E) v_y = 4ct;

@12.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, y = 2at + b,

```
z = c

$A) \upsilon_{y} = b;

$B) \upsilon_{y} = 2a;

$C) \upsilon_{y} = 2c;

$D) \upsilon_{y} = 2c;

$E) \upsilon_{y} = 4ct;

@13.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, y = 4at + b,

$$z = c$$

\$A) $\upsilon_{y} = b$;
\$B) $\upsilon_{y} = 2a$;
\$C) $\upsilon_{y} = 4a$;
\$D) $\upsilon_{y} = 2c$;
\$E) $\upsilon_{y} = 4ct$;
@14.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, y = 3a + 3bt,

```
z = c

$A) \upsilon_{y} = b;

$B) \upsilon_{y} = 2a;

$C) \upsilon_{y} = 4a;

$D) \upsilon_{y} = 3b;

$E) \upsilon_{y} = 4ct;

@15.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, $y = 3a + 3bt^2$,

$$z = c$$

\$A) $\upsilon_y = b$;
\$B) $\upsilon_y = 2a$;

```
$C) v_y = 4a;

$D) v_y = 3b;

$E) v_y = 6bt;

@16.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, $y = 2at^2 + b$,

```
z = c

$A) v_y = 4at;

$B) v_y = 2a;

$C) v_y = 4a;

$D) v_y = 3b;

$E) v_y = 6bt;

@17.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, $y = 3at^2 + b$,

```
z = c

$A) v_y = 4at;

$B) v_y = 6at;

$C) v_y = 4a;

$D) v_y = 3b;

$E) v_y = 6bt;

@18.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, $y = 4at^2 + b$,

```
z = c

$A) v_y = 4at;

$B) v_y = 6at;

$C) v_y = 8at;

$D) v_y = 3b;

$E) v_y = 6bt;

@19.
```

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось ординат (Oy): $x = a + 2ct^2$, $y = 4t^3 + b$,

```
z = c

$A) \upsilon_y = 4at;

$B) \upsilon_y = 6at;

$C) \upsilon_y = 8at;
```

```
$D) v_y = 12t^2;
$E) v_{v} = 6bt;
@20.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось ординат (Oy): x = a + 2ct^2, y = 3t^3 + b,
z = c
$A) v_{y} = 4at;
$B) v_{y} = 6at;
$C) v_{v} = 8at;
$D) v_y = 12t^2;
$E) v_y = 9t^2;
@21.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = ct
$A) v_{z} = c;
$B) v_{z} = 6at;
C v_z = 8at;
$D) v_z = 12t^2;
$E) v_z = 9t^2;
@22.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = 2ct
A) v_z = c;
$B) v_z = 2c;
$C) v_{z} = 8at;
$D) v_z = 12t^2;
$E) v_z = 9t^2;
@23.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = a + 2ct^2
A) v_{z} = c;
$B) v_z = 2c;
$C) v_z = 4ct;
$D) v_z = 12t^2;
```

\$E) $v_z = 9t^2$;

```
@24.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = b + 2ct^3
$A) v_{z} = c;
$B) v_z = 2c;
C v_z = 4ct;
$D) v_z = 6ct^2;
$E) v_{2} = 9t^{2};
@25.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = bt + ct^2
A) v_z = c;
$B) v_z = 2c;
C v_z = 4ct;
$D) v_z = 6ct^2;
§E) \vec{v} = b + 2ct;
@26.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = 4bt + 5ct^2
$A) v_z = 4b + 10ct;
$B) v_z = 2c;
C v_z = 4ct;
$D) v_{z} = 6ct^{2};
$E) v = b + 2ct;
@27.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2,
z = 4bt + 2ct^3
$A) v_z = 4b + 10ct;
$B) v_z = 4b + 6ct^2;
```

 $C) v_z = 4ct$;

\$D) $v_z = 6ct^2$; \$E) v = b + 2ct;

@_____.

```
Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось аппликат (Oz): x = a + 2ct^2, y = at + bt^2, z = bt + t^3
```

\$A)
$$v_z = 4b + 10ct$$
;

\$B)
$$v_z = 4b + 6ct^2$$
;

$$\$C) v_z = b + 3t^2;$$

\$D)
$$v_z = 6ct^2$$
;

\$E)
$$v_z = b + 2ct$$
;

@29.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось аппликат (Oz): $x = a + 2ct^2$, $y = at + bt^2$,

$$z = 2bt + t^3$$

\$A)
$$v_z = 4b + 10ct$$
;

\$B)
$$v_z = 4b + 6ct^2$$
;

$$C$$
 $v_z = b + 3t^2$;

\$D)
$$v_z = 2b + 3t^2$$
;

\$E)
$$v_z = b + 2ct$$
;

@30.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора скорости на ось аппликат (Oz): $x = a + 2ct^2$, $y = at + bt^2$,

$$z = b + 2t^3$$

\$A)
$$v_z = 4b + 10ct$$
;

\$B)
$$v_z = 4b + 6ct^2$$
;

\$C)
$$v_z = b + 3t^2$$
;

\$D)
$$v_z = 2b + 3t^2$$
;

\$E)
$$v_z = 6t^2$$
;

@31.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось абсцисс (Ox): $x = a + 2ct^2$, $y = at + bt^2$,

$$z = b + 2t^3$$

\$A)
$$a_x = 4c$$
;

\$B)
$$a_r = 4b + 6ct^2$$
;

$$C$$
 $a_x = b + 3t^2$;

\$D)
$$a_x = 2b + 3t^2$$
;

\$E)
$$a_x = 6t^2$$
;

@32.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось абсцисс (Ox): $x = a + 3ct^2$, $y = at + bt^2$,

$$z = b + 2t^3$$

```
A) a_x = 4c;
$B) a_x = 6c;
(C) a_x = b + 3t^2;
$D) a_x = 2b + 3t^2;
$E) a_x = 6t^2;
@33.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось абсцисс (Ox): x = a + 4ct^2, y = at + bt^2,
z = b + 2t^3
$A) a_x = 4c;
$B) a_{x} = 6c;
^{\$}C) a_{x} = 8c;
$D) a_x = 2b + 3t^2;
$E) a_x = 6t^2;
@34.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось абсцисс (Ox): x = a + 2bt^2, y = at + bt^2,
z = b + 2t^3
$A) a_{x} = 4c;
$B) a_{x} = 6c;
C a_x = 8c:
$D) a_x = 4b:
$E) a_x = 6t^2;
@35.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось абсцисс (Ox): x = a + 3bt^2, y = at + bt^2,
z = b + 2t^3
$A) a_{r} = 4c;
$B) a_{x} = 6c;
C a_{x} = 8c;
$D) a_r = 4b;
$E) a_x = 6b;
@36.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось абсцисс (Ox): x = at^2 + 2bt^3, y = at + bt^2,
z = b + 2t^3
$A) a_{x} = 2a + 12bt;
```

\$B) $a_x = 6c$; \$C) $a_x = 8c$;

```
$D) a_{x} = 4b;
$E) a_{x} = 6b;
@37.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось абсцисс (Ox): x = at^2 + 3bt^3, y = at + bt^2,
z = b + 2t^3
```

A = 2a + 12bt;

\$B) $a_x = 2a + 18bt$;

C $a_{x} = 8c$;

\$D) $a_x = 4b$:

\$E) $a_r = 6b$:

@38.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось абсцисс (Ox): $x = at^2 + 4bt^3$, $y = at + bt^2$, $z = b + 2t^3$

\$A) $a_x = 2a + 12bt$;

\$B) $a_x = 2a + 18bt$;

 $(a_x = 2a + 24bt;$

\$D) $a_{x} = 4b$:

\$E) $a_x = 6b$:

@39.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось абсцисс (Ox): $x = 2at^2 + bt^3$, $y = at + bt^2$,

$$z = b + 2t^3$$

\$A) $a_x = 2a + 12bt$;

\$B) $a_x = 2a + 18bt$;

C $a_x = 2a + 24bt$;

\$D) $a_x = 4a + 6bt$;

\$E) $a_{x} = 6b$;

@40.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось абсцисс (Ox): $x = 3at^2 + bt^3$, $y = at + bt^2$,

$$z = b + 2t^3$$

A = 2a + 12bt;

\$B) $a_x = 2a + 18bt$;

C $a_x = 2a + 24bt$;

\$D) $a_r = 4a + 6bt$;

\$E) $a_x = 6a + 6bt$;

@41

```
Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось ординат (Oy): x = 3at^2 + bt^3, y = at + bt^2, z = b + 2t^3 $A) a_y = 2b; $B) a_y = 8bt; $C) a_y = 2a + 24bt;
```

\$E) $a_y = 6a + 6bt$;

\$D) $a_v = 4a$;

@42.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось ординат (Oy): $x = 3at^2 + bt^3$, $y = at + 2bt^2$,

$$z = b + 2t^{3}$$

\$A) $a_{y} = 2b$;
\$B) $a_{y} = 4b$;
\$C) $a_{y} = 2a + 24bt$;
\$D) $a_{y} = 4a$;
\$E) $a_{y} = 6a + 6bt$;

@43.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось ординат (Oy): $x = 3at^2 + bt^3$, $y = at + 3bt^2$,

$$z = b + 2t^{3}$$

\$A) $a_{y} = 2b$;
\$B) $a_{y} = 4b$;
\$C) $a_{y} = 6b$;
\$D) $a_{y} = 4a$;
\$E) $a_{y} = 6a + 6bt$;

@44.

Закон движения сплошной среды задано в лагранжовых переменных. Найти проекцию вектора ускорения на ось ординат (Oy): $x = 3at^2 + bt^3$, $y = at + 4bt^2$

```
, z = b + 2t^{3}

$A) a_{y} = 2b;

$B) a_{y} = 4b;

$C) a_{y} = 6b;

$D) a_{y} = 8b;

$E) a_{y} = 6a + 6bt;
```

@45.

```
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось ординат (Oy): x = 3at^2 + bt^3, y = at + 5bt^2,
z = b + 2t^3
$A) a_{v} = 2b;
$B) a_v = 4b;
C) a_{y} = 6b;
$D) a_{y} = 8b;
$E) a_v = 10b;
@46.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось ординат (Oy): x = 3at^2 + bt^3, y = bt^2 + 5ct^3
z = b + 2t^3
$A) a_{y} = 2b + 30ct;
$B) a_{y} = 4b;
$C) a_v = b + 15ct;
$D) a_{v} = 8b;
$E) a_v = 10c;
@47
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось ординат (Oy): x = 3at^2 + bt^3,
y = bt^2 + 2ct^3, z = b + 2t^3
A) a_y = 2b + 30ct;
$B) a_v = 2b + 12ct;
C a_y = b + 15ct;
$D) a_v = 8b;
$E) a_v = 10c;
@48.
Закон движения сплошной среды задано в лагранжовых переменных. Найти
проекцию вектора ускорения на ось ординат (Oy): x = 3at^2 + bt^3, y = bt^2 + 3ct^3
z = b + 2t^3
A) a_y = 2b + 30ct;
$B) a_y = 2b + 12ct;
```

Итоговая система оценок по кредитно-рейтинговой системе с

C $a_v = 2b + 18ct$;

\$D) $a_{y} = 8b$;

\$E) $a_v = 10c$;

использованием буквенных символов Диапазон Численное Оценка по традиционной

буквенной системе	соответствующих наборных баллов	выражение оценочного балла	системе	
A	10	95-100	Отлично	
A-	9	90-94		
B+	8	85-89		
В	7	80-84	Хорошо	
В-	6	75-79		
C +	5	70-74		
C	4	65-69		
C-	3	60-64	Удовлетворительно	
D+	2	55-59		
D	1	50-54		
Fx	0	45-49	Неудовлетворительно	

Составитель		
«	>>	2025 г.

Оценка по