МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

Естественнонаучный факультет

Кафедра математики и физики

«УТВЕРЖДАЮ»

«**23** » августо, 2025 г.

Зав. кафедрой Меев Гулбоев Б.Дж.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной практике

Тип практики: Ознакомительная

Направление подготовки: 03.03.02 «Физика»

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

Год набора: 2024г.

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Учебная практика: «Ознакомительная»

	Контролируемые разделы, темы	Формиру	Оценочные средства					
№ π/π		емые	К-во заданий	Вид и количество				
	1 13 1 ~ /	компе тенции		Вид	К-во			
III семестр								
1	Динамика вращательного движения.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Рабочая тетрадь	1			
2	Статика. Механические машины.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Дискуссия	1			
3	Молекулярно- кинетическая теория газов.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Реферирование	1			
4	Давление газов. Кинетическая энергия. Температура.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Дискуссия	1			
5	Основные законы термодинамики. Первый закон термодинамика. Второй и третий закон термодинамика. ка.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Рабочая тетрадь	1			
6	Электричество. Закон Кулона. Напряженность электрического поля. Работа и потенциал электростатическая поля.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Презентация	1			
7	Постоянный электрический ток. Электрическая ток. Электродвижущая сила.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Реферирование	1			
8	Магнетизм. Магнитное поле в вакууме.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Рабочая тетрадь	1			
9	Взаимодействия токов. Закон Ампера, сила Лоренца.	ОПК-1 ПК-3 ПК-4 ПК-5	10	Рабочая тетрадь	1			
10	Законы электромагнитные индукции.	ОПК-1	10	Дискуссия	1			

	Токи Фуко.	ПК-3			
		ПК-4			
		ПК-5			
	Итоговый контроль (зачет)	ОПК-1	100	Тестирование	
		ПК-3			10
		ПК-4			
		ПК-5			

Перечень оценочных средств

	Наименование оценочного средства	Характеристика оценочного средства	Представление оценочного средства в ФОС
1.	Рабочая тет- радь	Дидактический комплекс, предназначенный для самостоятельной работы обучающегося и позволяющий оценивать уровень усвоения им учебного материала.	Тематика конспектов
2.	Дискуссия	Оценочное средство, позволяющее включить обучающихся в процесс обсуждения спорного вопроса, проблемы и оценить их умение аргументировать собственную точку зрения.	Перечень дискуссионных тем
3.	Презентация	Оценочное средство, позволяющее оценить умение обучающихся анализировать, работать с большим количеством данных, в том числе мультимедийных, выделять среди них наиболее важное, тезисно и наглядно, используя различные медиа, представлять ключевые идеи, доносить до аудитории полноценную информацию о предмете, помочь составить целостное представление о нем.	Тематика презентации
4.	Реферирование	Вид речевой деятельности, заключающийся в извлечении из прочитанного текста основного содержания и заданной информации с целью их письменного изложения.	Перечень тем рефератов
5.	Опрос	Метод контроля, позволяющий не только опрашивать и контролировать знания учащихся, но и сразу же поправлять, повторять и закреплять знания, умения и навыки	Перечень вопросов
6.	Тестирование	Метод контроля, который позволяет оценить динамику усвоения учебного материала, уровень владения системой знаний, умений и навыков. В ходе контроля происходит повторение, закрепление и совершенствование знаний путем уточнения и дополнения, переосмысливание и обобщение пройденного материала.	Тестовые задания

Перечень тем для конспектирования в РАБОЧЕЙ ТЕТРАДИ

Учебная практика: «Ознакомительная»

- 1. Атомные и молекулярные массы, атомная единица массы. Количество вещества.
- 2. Законов кинематики.
- 3. Законов динамики.

- 4. Законов статики.
- 5. Строение и свойства атома. Понятие о квантовой механике.
- 6. Законы идеальных газов.
- 7. Законы реальных газов.
- 8. Изотермы Ван-дер-Ваальса.
- 9. Химическая связь. Координационная связь.
- 10. Донорно-акцепторная связь.
- 11. Периодическая система элементов Д.И. Менделеева..
- 12. Общая характеристика кристаллов.
- 31. Поглощение света веществом.
- 32. Динамика вращательного движения.
- 37. Статика. Механические машины.
- 38. Молекулярно- кинетическая теория газов.
- 39. Давление газов. Кинетическая энергия. Температура.
- 40. Основные законы термодинамики.
- 41.Первый закон термодинамика.
- 42. Второй и третий закон термодинамика.
- 43. Электричество.
- 44.Закон Кулона.
- 45. Напряженность электрического поля.
- 46. Работа и потенциал электростатическая поля.
- 47. Постоянный электрический ток.
- 48.Электрическая ток.
- 49. Электродвижущая сила.
- 50. Магнетизм.
- 51. Магнитное поле в вакууме.
- 52. Взаимодействия токов.
- 53. Закон Ампера, сила Лоренца.
- 54.Законы электромагнитные индукции.
- 55. Токи Фуко.

Характеристика задания:

- 1. Конспект представляет собой последовательную запись содержания книги, лекции, других видов работ, преимущественно научных, чью основу составляют тезисы, выписки, питаты.
- 2. Анализ, согласно различным толковым словарям, это метод исследования путем расчленения исследуемого предмета или явления, рассмотрения отдельных сторон, свойств, составных частей изучаемого предмета, вопроса, проблемы; противоположным понятием является «синтез». Для грамотного анализа темы следует внимательно изучить текст, постичь и изложить главную мысль, идею, основные положения, сделать и изложить выводы.

Критерии оценки:

- 1. Оценка «отлично» выставляется студенту, если правильно выполнены все задания. Продемонстрирован высокий уровень владения материалом. Проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.
- 2. Оценка «хорошо» выставляется студенту, если правильно выполнена большая часть заданий. Присутствуют незначительные ошибки. Продемонстрирован хороший уровень владения материалом. Проявлены средние способности применять знания и умения к выполнению конкретных заданий.
- 3. Оценка «удовлетворительно» выставляется студенту, если задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять зна-

ния и умения к выполнению.

4. Оценка неудовлетворительно выставляется студенту, если задания выполнены менее чем наполовину. Продемонстрирован неудовлетворительный уровень владения материалом. Проявлены недостаточные способности применять знания и умения к выполнению конкретных заданий.

Перечень дискуссионных тем для круглого стола

Учебная практика: ««Ознакомительная»

- 1. Гироскоп. Свободные оси вращения
- 2. Устойчивость конструкции и механические машины
- 3. Вынужденные механические колебания
- 4. Работа при тепловых процессах
- 5. КПД тепловых машин
- 6. Симметрия кристаллов
- 7. Напряженности электрического поля системы зарядов
- 8. Пьезоэлектрический эффект
- 9. Техническое применение электролиза

Характеристика задания:

Дискуссия должна состоять из трех основных стадий:

- 1. Вступительная часть: обозначение проблемы;
- 2. Процесс дискуссии. На этом этапе начинается публичное обсуждение проблемы. Каждый из участников дискуссии должен выразить свою точку зрения в коротком выступлении. Далее следует обсуждение позиций.
 - 3. Заключительный этап. Дискуссия завершается подведением итогов.

Критерии оценки:

- 1. Оценка **«отлично»** выставляется студенту, если владеет теоретическим уровнем знаний; отличное качество ответов на вопросы; подкрепляет материалы фактическими данными (статистические данные и пр.); способен делать выводы; способен отстаивать собственную точку зрения; способен ориентироваться в представленном материале;
- 2. Оценка **«хорошо»** выставляется студенту, если владеет теоретическим уровнем знаний; подкрепляет материалы фактическими данными (статистические данные и пр.); способен делать выводы; способен ориентироваться в представленном материале;
- 3. Оценка **«удовлетворительно»** выставляется студенту, если владеет теоретическим уровнем знаний;
- 4. Оценка **«неудовлетворительно»** выставляется студенту, если не владеет ни одним из вышеперечисленным качеством.

Перечень тем для презентаций

Учебная практика: «Ознакомительная»

- 1. Теорема Штейнера и момент инерции тел
- 2. Турбулентное течение
- 3. Затухающие колебания
- 4. Температурная шкала
- 5. Изотермы реального газа
- 6. Капиллярные явления
- 7. Конденсаторы и их соединение
- 8. КПД источника тока
- 9. Искровой и коронный разряд

Характеристика задания:

Структура презентации - количество слайдов должны соответствовать содержанию и продолжительности выступления (для 7-минутного выступления рекомендуется использовать не более 10 слайдов) — наличие титульного слайда и слайда с выводами;

Наглядность - иллюстрации хорошего качества, с четким изображением, текст легко чи-

тается – используются средства наглядности информации (таблицы, схемы, графики и т. д.);

Дизайн и настройка - оформление слайдов соответствует теме, не препятствует восприятию содержания, для всех слайдов презентации используется один и тот же шаблон оформления;

Содержание - презентация отражает основные этапы исследования (проблема, цель, гипотеза, ход работы, выводы, ресурсы) — содержит полную, понятную информацию по теме работы — орфографическая и пунктуационная грамотность;

Требования к выступлению - выступающий свободно владеет содержанием, ясно и грамотно излагает материал — свободно и корректно отвечает на вопросы и замечания аудитории — точно укладывается в рамки регламента (7-10 минут)

Критерии оценки:

- 1. Оценка «**отлично**» выставляется студенту, если задание полностью выполнено и оформлено в соответствии с требованиями;
- 2. Оценка **«хорошо»** выставляется студенту, если задание на 70% не полностью соответствует указанным требованиям, требует доработки;
- 3. Оценка **«удовлетворительно»** выставляется студенту, если задание выполнено лишь частично, на 20-30%;
- 4. Оценка «неудовлетворительно» выставляется студенту, который не выполнил задание.

Перечень тем для реферирования

Учебная практика: «Ознакомительная»

- 1. Механика материальной точки
- 2. Механические колебания и волны
- 3. Механика жидкостей и газов
- 4. Молекулярно-кинетическая теория газов
- 5. Законы термодинамики
- 6. Свойства жидкостей
- 7. Электростатика
- 8. Законы постоянного тока
- 9. Электрический ток в газах
- 10. Электрический ток
- 11. Электрический ток в жидкостях
- 12. Электрический ток в электролитах
- 13. Электропроводность полимеров
- 14. Тенденции развития современной науки.
- 15. Классификация наук.

Характеристика задания:

Реферат должен состоять из введения, основного текста, заключения и списка литературы. Реферат при необходимости может содержать приложение. Каждая из частей начинается с новой страницы.

Заголовки должны четко и кратко отражать содержание разделов, подразделов. Заголовки следует печатать с прописной буквы. Переносы слов в заголовках не допускаются. Если заголовок состоит из двух предложений, их разделяют точкой. В конце заголовка точку не ставят.

Основной текст должен быть разделён на главы. Если текст достаточно объёмный, то главы дополнительно делятся на параграфы. Главы и параграфы реферата нумеруются. На основную часть реферата приходится 6-10 страниц.

Критерии оценки:

- оценка **«отлично»** выставляется студенту, если тема раскрыта полностью. Продемонстрировано превосходное владение материалом. Использованы надлежащие источники в нужном количестве. Структура работы соответствует поставленным задачам. Степень самостоятельности работы высокая;
 - оценка **«хорошо»** выставляется студенту, если тема в основном раскрыта. Проде-

монстрировано хорошее владение материалом. Использованы надлежащие источники. Структура работы в основном соответствует поставленным задачам. Степень самостоятельности работы средняя.;

- оценка **«удовлетворительно»** выставляется студенту, если тема раскрыта слабо. Продемонстрировано удовлетворительное владение материалом. Использованные источники и структура работы частично соответствуют поставленным задачам. Степень самостоятельности работы низкая.
- оценка «**неудовлетворительно**» выставляется студенту, если тема не раскрыта. Продемонстрировано неудовлетворительное владение материалом. Использованные источники недостаточны. Структура работы не соответствует поставленным задачам. Работа несамостоятельна.

Тестовые задачи для промежуточного контроля №1

Учебная практика: «Ознакомительная»

ВАРИАНТ 1

- 1. Тело перемещается от координаты (0; 3) к координате (4; 0). Найти перемещение тела. Ответы: A(3 м); B(4 м); C(5 м); Д(25 м); E(30 м).
- 2. Тело в пространстве перемещается с начала координат (0; 0; 0) и останавливается в точке с координатой (2; 3; 6). Найти перемещение тела.

Ответы: А(2 м); В(3 м); С(6 м); Д(7 м); Е(49 м).

3. Велосипедист, двигаясь равномерно за t=15 с, проходит расстояние s=60 м. Найти скорость велосипедиста.

Ответы: A(2 м/c); B(4 м/c); C(6 м/c); Д(8 м/c); E(10 м/c).

4. Поезд двигается со скорость $\upsilon = 10$ м/с. За какой промежуток времени он пройдет расстояние s = 900 м.

Ответы: А(60 с); В(70 с); С(80 с); Д(90 с); Е(100 с).

- 5. Самолет летит со скоростью $\upsilon = 100$ м/с. Какое расстояние он пролетит за t = 60 с? Ответы: A(600 м); B(700 м); C(800 м); Д(900 м); E(1000 м).
- 6. Автомобиль, двигаясь равноускоренно, за t=20 с меняет скорость от $\theta_0=10$ м/с до $\theta_t=20$ м/с. Найти ускорение автомобиля.

Ответы: $A(0.5 \text{ M/c}^2)$; $B(1.5 \text{ M/c}^2)$; $C(2.5 \text{ M/c}^2)$; $Д(3.5 \text{ M/c}^2)$; $E(4.5 \text{ M/c}^2)$.

7. Мотоциклист двигается равноускоренно с ускорением a=0.8 м/с. За какой промежуток времени изменится скорость от $\theta_0=4$ м/с до $\theta_t=20$ м/с?

Ответы: A(12 c); B(16 c); C(20 c); Д(24 c); E(28 c).

8. Эскалатор метро движется со скоростью $\upsilon = 0.8$ м/с. Найти промежуток времени, за который пассажир переместится на s = 40 м относительно Земли.

Ответы: A(8 c); B(10 c); C(20 c); Д(50 c); E(60 c).

9. Поезд идет со скоростью v=15 м/с. Мимо наблюдателя он проходит за t=6 с. Чему равна длина поезда?

Ответы: А(90 м); В(100 м); С(110 м); Д(120 м); Е(130 м).

10. Скорость лодки относительно воды в два раза больше, чем скорость течения реки: $\upsilon=0,5$ м/с. За какой промежуток времени, лодка проходит расстояние s=250 м, против течения?

Ответы: А(400 с); В(500 с); С(600 с); Д(700 с); Е(800 с).

ВАРИАНТ 2

21. К газу, находящемуся под поршнем цилиндра, подводится количество теплоты ΔQ =500 Дж, в результате чего в изобарических условиях он совершает работу ΔA =250 Дж. Вычислить приращения внутренней энергии тела (ΔU).

Ответы: А(230 Дж); В(240 Дж); С(250 Дж); Д(260 Дж); Е(270 Дж).

22. При изотермическом расширении ($\Delta U = 0$) кислорода была совершена работа $\Delta A = 5~000~\rm{Д}ж$. Какое количество теплоты (ΔQ , к $\rm{Д}ж$) получил газ при этом?

Ответы: А(3 кДж); В(5 кДж); С(7 кДж); Д(9 кДж); Е(11 к Дж).

23. Газ, совершающий цикл Карно. Получает тепло от нагревателя при температуре T_1 =400 К и отдает холодильнику часть тепла при температуре T_2 =340 К. Вычислить КПД цикла.

Ответы: A(15%); B(20%); C(25%); Д(30%); E(35%).

24. Идеальная тепловая машина имеет полезную мощность $N_{\text{полез}}$ =80 кВт и работает в температурном интервале от T_1 =300К до T_2 =400К. Найти количество теплоты (в ед. МДж), получаемое машиной от нагревателя зс t=10 с.

Ответы: А(0,4 МДж); В(1,4 МДж); С(2,4 МДж); Д(3,4 МДж); Е(4,4 МДж).

25. Какую работу (в ед. кДж) может совершить двигатель за один цикл Карно, если за цикл от нагревателя получает Q=2000 Дж количество теплоты при температуре $T_1=1000$ К. Температура холодильника $T_2=300$ К.

Ответы: A(0,4 кДж); B(1,4 кДж); C(2,4 кДж); D(3,4 кДж); D(3,4 кДж); D(4,4 кДж).

26. Определить реактивное сопротивление конденсатора, имеющий электроемкость $C=530\cdot10^{-6}$ Ф в сети переменного тока с частотой v=50 Гц.

Ответы: А(6 Ом); В(16 Ом); С(26 Ом); Д(36 Ом); Е(46 Ом).

27. К источнику переменного тока с частотой колебания v=50 Гц подключили катушку с индуктивностью L=0,2 Гн. Определить реактивное сопротивление катушки.

Ответы: А(52,8 Ом); В(62,8 Ом); С(72,8 Ом); Д(82,8 Ом); Е(92,8 Ом).

28. По катушке с индуктивностью L, которая включена в сеть с напряжением U=220 В. течет ток J=3,14 А. Определить L катушки, если частота переменного тока v=50 Гп

Ответы: $A(0,22 \ \Gamma H)$; $B(2,22 \ \Gamma H)$; $C(4,22 \ \Gamma H)$; $D(6,22 \ \Gamma H)$; $D(6,22 \ \Gamma H)$; $D(8,22 \ \Gamma H)$.

29. Из одного пункта к другому передается мощность P=10⁶ Вт при напряжении U=10 000 В. Каким сопротивлением должна обладать линия электропередачи, чтобы потери составляли 10% от передаваемой мощности.

Ответы: А(800 Ом); В(900 Ом); С(1000 Ом); Д(1100 Ом); Е(1200 Ом).

30. Из одного пункта в другой передается мощность. Сопротивление проводов R=10 Ом. Определить потери мощности ($P_{\text{потерь}}$, MBт) в проводах, если передача осуществляется при напряжении U=8000~B.

Ответы: A(3,4 MBт); B(4,4 MBт); C(5,4 MBт); Д(6,4 MBт); E(7,4 MBт). ВАРИАНТ 3

1. Расстояние от города A до города B s=50 км плот проплывает по реке со скоростью $\upsilon=8$ км/ч относительно воды. Скорость течения реки $\upsilon=2$ км/ч. За сколько часов плот пройдет

Ответы: А(5 ч.); В(10 ч.); С(15 ч.); Д(20 ч.); Е(25 ч.).

2. Стальной шарик падает с высоты h=80 м. Найти время падения шарика. Ускорение свободного падения g=10 м/с².

Ответы: A(3 c); B(4 c); C(5 c); Д(6 c); E(7 c).

данное расстояние?

3. Жонглер подбрасывает вверх мяч со скоростью $\upsilon = 10$ м/с. Через какой промежуток времени мяч вернется? Ускорение свободного падения g = 10 м/с².

Ответы: A(1 c); B(2 c); C(3 c); Д(4 c); E(5 c).

4. Стальной шарик свободно падает с высоты h=20 м. Какую скорость приобретет шарик в моменте касания с землей? Ускорение свободного падения g=10 м/c².

Ответы: A(20 м/c); B(30 м/c); C(40 м/c); Д(50 м/c); E(60 м/c).

5. С башни опускают камень, без начальной скорости. Через t=3 с камень достигает земли. Определить высоту башни. Ускорение свободного падения $g=10 \text{ м/c}^2$.

Ответы: А(15 м); В(25 м); С(35 м); Д(45 м); Е(55 м).

6. Скорый поезд, длиной ℓ =150 м, движется со скоростью υ =25 м/с. За какой промежуток времени, поезд пройдет мимо человека, стоящего около железной дороги?

Ответы: A(2 c); B(4 c); C(6 c); D(8 c); D(8 c); D(8 c).

7. Какой должна быть минимальная длина (в км) взлетной полосы, если скорость υ=100 м/с, необходимая для отрыва от земли, развивается в течение t=90 с. с момента старта?

Ответы: A(6 км); B(7 км); C(8 км); Д(9 км); E(10 км).

8. Камень падает, без начальной скорости, с высоты h=80 м. Определить его среднюю скорость.

Ответы: A(20 м/c); B(30 м/c); C(40 м/c); Д(50 м/c); E(60 м/c).

9. Двигаясь равномерно, тело на некотором пути за t=12 с уменьшает свою скорость от $v_0=7$ м/с до $v_t=1$ м/с. Определить отрицательное ускорение тела на этом пути.

Ответы: A(-0.4 M/c); B(-0.5 M/c); C(-0.6 M/c); Д(-0.7 M/c); E(-0.8 M/c).

10. Имея начальную скорость v_0 =2 м/с, тело начало двигаться равноускоренно и на пути s=120 м увеличивает скорость в 4 раза. Найти ускорение тела.

Ответы: $A(0,25 \text{ м/c}^2)$; $B(0,35 \text{ м/c}^2)$; $C(0,45 \text{ м/c}^2)$; $Д(0,55 \text{ м/c}^2)$; $E(0,65 \text{ м/c}^2)$.

Тестовые задачи для промежуточного контроля №2

Учебная практика«Ознакомительная»

ВАРИАНТ 1

1. Колебательный контур состоит из конденсатора емкостью $C=0.05 \Phi$ и катушки с индуктивностью $L=5\cdot10^{-6} \Gamma$ н. Каков период (в ед. мс) электрического колебания в контуре?

Ответы: A(3,14 мc); B(4,14 мc); C(5,14 мc); Д(6,14 мc); E(7,14 мc).

2. Колебательный контур состоит из конденсатора емкостью $C=0.05 \Phi$ и катушки с индуктивностью $L=5\cdot 10^{-6} \Gamma$ н. Какова циклическая частота (в ед. к Γ ц) колебаний в контуре?

Ответы: $A(1 \ \kappa \Gamma \mu); \ B(2 \ \kappa \Gamma \mu); \ C(3 \ \kappa \Gamma \mu); \ Д(4 \ \kappa \Gamma \mu); \ E(5 \ \kappa \Gamma \mu)$

3. Колебательный контур состоит из конденсатора емкостью C=0.05 Ф и катушки с индуктивностью $L=5\cdot 10^{-6}$ Гн. Какова частота колебаний в контуре?

Ответы: А(118 Гц); В(218 Гц); С(318 Гц); Д(418 Гц); Е(518 Гц).

4. При измерении индуктивности катушки циклическая частота в колебательном контуре оказалось равной ω =1000 Гц. Емкость конденсатора C=0,04 Ф. Чему равна индуктивность (в ед. мкГн) катушки?

Ответы: A(10 мкГн); B(15 мкГн); C(20 мкГн); D(25 мкГн); D

5. Индуктивное сопротивление катушки X_L =3,5 Ом. Определить индуктивность (в ед. м Γ н) катушки, если циклическая частота равна ω =500 Γ ц.

Ответы: A(7 мГн); B(9 мГн); C(11 мГн); $\mathcal{L}(13 \text{ мГн})$; E(15 мГн).

6. Амперметр показывает силу тока $J_0=3$ А. Чему равно амплитудное значение (J_m) переменного тока в сети?

Ответы: А(3,23 A); В(4,23 A); С(5,23 A); Д(6,23 A); Е(7,23 A).

7. Сколько витков (N_2) должна имеет вторичная обмотка трансформатора, чтобы повысить напряжение от U_1 =220 B до U_2 =1100 B, если в первичной обмотке число витков равно N_1 =100.

Ответы: А(300); В(400); С(500); Д(600); Е(700).

8. Два заряда $q_1=2\cdot 10^{-9}~\rm K\pi~~q_2=8\cdot 10^{-9}~\rm K\pi~~$ расположены на расстоянии $~\rm r=3\cdot 10^{-2}~\rm m$. Определить силу (в ед. мкН) взаимодействия этих зарядов, если коэффициент пропорциональности равен $\rm k=1/4\pi\epsilon_0=9\cdot 10^9~\rm Hm^2/K\pi^2$.

Ответы: А(130 мкН); В(140 мкН); С(150 мкН); Д(160 мкН); Е(170 мкН).

9. Расстояние между зарядами q_1 =2q и q_2 =5q равно r=0,3 м. Определить значение q (в ед. мкКл), если сила взаимодействия зарядов равна F=4 H. Коэффициент пропорциональности k=9·10⁹ Hm^2/Kn^2 .

Ответы: А(2 мкКл); В(4 мкКл); С(6 мкКл); Д(8 мкКл); Е(10 мкКл).

10. Чему равна напряженность электрического поля, создаваемого зарядом $q=8\cdot10^{-9}$ Кл на расстоянии r=0,3 м. Коэффициент пропорциональности $k=9\cdot10^9$ Нм²/Кл².

Ответы: A(700 B/m); B(800 B/m); C(900 B/m); Д(1000 B/m); E(1100 B/m).

ВАРИАНТ 2

21. Найти частоту излучения фотона, обладающего энергией ε =3,31·10⁻¹⁹ Дж. Постоянная Планка h=6,62·10⁻³⁴ Дж·с.

Ответы: $A(5\cdot10^{14}\ \Gamma \text{ц});\ B(6\cdot10^{14}\ \Gamma \text{ц});\ C(7\cdot10^{14}\ \Gamma \text{ц});\ \mathcal{L}(8\cdot10^{14}\ \Gamma \text{ц});\ E(9\cdot10^{14}\ \Gamma \text{ц})$

22. Найти длину волны фотона, обладающего энергией ε =3,31·10⁻¹⁹ Дж. Постоянная Планка h=6,62·10⁻³⁴ Дж·с. Скорость света c=3·10⁸ м/с.

Ответы: $A(5\cdot10^{-7} \text{ м}); B(6\cdot10^{-7} \text{ м}); C(7\cdot10^{-7} \text{ м}); Д(8\cdot10^{-7} \text{ м}); E(9\cdot10^{-7} \text{ м})$

23. Найти массу фотона, обладающего энергией ε =3,6·10⁻¹⁹ Дж. Скорость света ε =3·10⁸ м/с.

Ответы: $A(2\cdot10^{-36} \text{ кг}); B(3\cdot10^{-36} \text{ кг}); C(4\cdot10^{-36} \text{ кг}); Д(5\cdot10^{-36} \text{ кг}); E(6\cdot10^{-36} \text{ кг})$

24. Мощность излучения Солнца составляет $N=4\cdot10^{26}$ Вт. На сколько уменьшится масса Солнца за t=2,3 с. Скорость света $c=3\cdot10^8$ м/с.

Ответы: $A(10^7 \text{ кг}); B(10^8 \text{ кг}); C(10^9 \text{ кг}); Д(10^{10} \text{ кг}); E(10^{11} \text{ кг})$

25. Работа выхода электрона из металла кадмия A=4,08 эВ. На поверхность металла падает излучение с энергией фотона $\varepsilon=6$ эВ. Определить максимальную кинетическую энергию электрона в этих же единицах, т.е. в эВ.

Ответы: A(1,32 3B); B(1,62 3B); C(1,92 3B); Д(2,22 3B); E(2,52 3B)

26. Работа выхода электрона из алюминия A=4,25 эВ. Максимальная кинетическая энергия, вылетающих электронов $W_k=1,25$ эВ. Определить энергию (ϵ) фотона, вызывающего фотоэффект в тех же единицах, т.е. в эВ.

Ответы: $A(5,5 \, 3B)$; $B(6,5 \, 3B)$; $C(7,5 \, 3B)$; $\mathcal{L}(8,5 \, 3B)$; $E(9,5 \, 3B)$

27. Красная граница фотоэффекта для цинка $\lambda_k = 3,31 \cdot 10^{-7}$ м. Определить работу выхода электрона (A). Постоянная Планка $h = 6,62 \cdot 10^{-34}$ Дж·с. Скорость света $c = 3 \cdot 10^8$ м/с.

Ответы: $A(5\cdot10^{-19}\ \text{Дж});\ B(6\cdot10^{-19}\ \text{Дж});\ C(7\cdot10^{-19}\ \text{Дж});\ Д(8\cdot10^{-19}\ \text{Дж});\ E(9\cdot10^{-19}\ \text{Дж})$ 28. Определить импульс фотона с длиной волны $\lambda=1,66\cdot10^{-7}$ м. Постоянная Планка $h=6,62\cdot10^{-34}\ \text{Дж}\cdot\text{с}.$

Ответы: $A(2\cdot10^{-27} \text{ кг·м/c}); B(3\cdot10^{-27} \text{ кг·м/c}); C(4\cdot10^{-27} \text{ кг·м/c}); Д(5\cdot10^{-27} \text{ кг·м/c}); E(6\cdot10^{-27} \text{ кг·м/c})$

29. С фотона из металла с энергией ε =8,5 эВ выбыл электрон с кинетической энергией W_k =0,5 эВ. Найти работу выхода электрона из металла в тех же единицах, т.е. в эВ.

Ответы: $A(2 \ni B)$; $B(4 \ni B)$; $C(6 \ni B)$; $D(8 \ni B)$; $D(8 \ni B)$; $D(8 \ni B)$; $D(8 \ni B)$

30. Фотон с энергией є=3,75 эВ вызывает фотоэффект. Найти кинетическую энергию (в эВ) фотоэлектрона, если работа выхода для данного металла равна A=2,25 эВ.

Ответы: $A(1,5 \ni B)$; $B(2,5 \ni B)$; $C(3,5 \ni B)$; $Д(4,5 \ni B)$; $E(5,5 \ni B)$

ВАРИАНТ 3

1. По горизонтальному проводнику длиной ℓ =0,2 м и массой m=2·10⁻³ кг течет ток силой J=5 A. Определить магнитную индукцию (B) поля, в котором нужно поместить проводник, чтобы он висел, т.е. не падал. Ускорение свободного падения g=10 м/c².

Ответы: A(0.02 Тл); B(0.04 Тл); C(0.06 Тл); Д(0.08 Тл); E(0.10 Тл)

2. Определить магнитную индукцию поля (B), в котором на рамку с током J=5 А действует момент силы M=0.02 Нм. Площадь рамки $S=2\cdot 10^{-2}$ м².

Ответы: A(0,2 Тл); B(0,3 Тл); C(0,4 Тл); Д(0,5 Тл); E(0,6 Тл)

3. Протон описал окружность радиусом R=0.05 м в однородном магнитном поле с индукцией B=0.02 Тл. Определить скорость (в ед. км/с) протона. Отношение заряда протона к его массе $e/m=10^8$ Кл/К.

Ответы: A(40 км/c); B(60 км/c); C(80 км/c); Д(100 км/c); E(120 км/c)

4. В контуре из проводника магнитный поток изменился за Δt =0,3 с от Φ_1 =0,02 Вб до Φ_2 =0,08 Вб. Найти силу тока в контуре, если сопротивление проводника R=0,2 Ом.

Ответы: A(1 A); B(2 A); C(3 A); Д(4 A); E(5 A)

5. При равномерном изменении силы тока в контуре от J_1 =2 A до J_2 =8 A в течение Δt =0,1с в ней возникает ЭДС самоиндукции ϵ_s =6 В. Определить индуктивность катушки.

Ответы: $A(0,1 \Gamma H)$; $B(0,1 \Gamma H)$; $C(0,1 \Gamma H)$; $D(0,1 \Gamma H)$; $D(0,1 \Gamma H)$; $D(0,1 \Gamma H)$

6. Сила тока в катушке изменяется на ΔJ =50 A в течении Δt =0,1с. Индуктивность катушки L=0,2 Гн. Определить значение ЭДС самоиндукции.

Ответы: А(70 В); В(80 В); С(90 В); Д(100 В); Е(110 В)

7. Какова должна быть сила тока в катушке с индуктивностью L=0,4 Гн, чтобы энергия магнитного поля была равна W=20 Дж?

Ответы: А(4 А); В(6 А); С(8 А); Д(10 А); Е(12 А)

8. Электрон движется в однородном магнитном поле с индукцией B=0,2 Тл. Его скорость равна θ = 10^7 м/с и направлена под углом φ = 30^0 к линиям поля. Вычислить силу, действующую на электрон в магнитном поле. Заряд электрона e=1,6·10⁻¹⁹ Кл.

Ответы: $A(0,6\cdot10^{-13} \text{ H}); B(1,6\cdot10^{-13} \text{ H}); C(2,6\cdot10^{-13} \text{ H}); Д(3,6\cdot10^{-13} \text{ H}); E(4,6\cdot10^{-13} \text{ H})$ 9. Электрический ток в цепи равен J=4 A, если напряжение в сети U=120 В. Какое сопротивление имеет участок цепи?

Ответы: А(20 Ом); В(30 Ом); С(40 Ом); Д(50 Ом); Е(60 Ом)

10. Найти силу тока в участке цепи с сопротивлением R=25 Ом, если напряжение участка цепи равно U=75 В.

Ответы: А(1 А); В(2 А); С(3 А); Д(4 А); Е(5 А)

Характеристика задания:

Эффективность подготовки студентов к к решению тестовых задач зависит от качества ознакомления с рекомендованной литературой. Для подготовки к промежуточному и итоговому контролю студенту необходимо ознакомиться с материалом, посвященным теме семинара, в учебнике или другой рекомендованной литературе, записях с лекционного занятия, обратить внимание на усвоение основных понятий дисциплины, выявить неясные вопросы и подобрать дополнительную литературу для их освещения, составить тезисы выступления по отдельным проблемным аспектам.

Критерии оценки:

- «зачтено» выставляется студенту, если дан полный, развернутый ответ на поставленный вопрос; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений; знание по предмету демонстрируются на фоне понимания его в системе данной науки и междисциплинарных связей; ответы на дополнительные вопросы четкие, краткие;
- «не зачтено» выставляется студенту, если ответ представляет собой разрозненные знания с существенными ошибками по вопросу; присутствуют фрагментарность, нелогичность изложения, студент не осознает связь обсуждаемого вопроса с другими объектами дисциплины, речь неграмотная; существенные ошибки; незнание терминологии; ответы на дополнительные вопросы неправильные.

ТЕСТОВЫЕ ЗАДАЧИ ДЛЯ СДАЧИЗАЧЕТА

1. Расстояние от города A до города B s=50 км плот проплывает по реке со скоростью $\upsilon=8$ км/ч относительно воды. Скорость течения реки $\upsilon=2$ км/ч. За сколько часов плот пройдет данное расстояние?

Ответы: А(5 ч.); В(10 ч.); С(15 ч.); Д(20 ч.); Е(25 ч.).

2. Стальной шарик падает с высоты h=80 м. Найти время падения шарика. Ускорение свободного падения g=10 м/с².

Ответы: A(3 c); B(4 c); C(5 c); Д(6 c); E(7 c).

3. Жонглер подбрасывает вверх мяч со скоростью $\upsilon = 10$ м/с. Через какой промежуток времени мяч вернется? Ускорение свободного падения g = 10 м/с².

Ответы: A(1 c); B(2 c); C(3 c); Д(4 c); E(5 c).

4. Стальной шарик свободно падает с высоты h=20 м. Какую скорость приобретет шарик в моменте касания с землей? Ускорение свободного падения g=10 м/с².

Ответы: A(20 м/c); B(30 м/c); C(40 м/c); Д(50 м/c); E(60 м/c).

5. С башни опускают камень, без начальной скорости. Через t=3 с камень достигает земли. Определить высоту башни. Ускорение свободного падения $g=10 \text{ м/c}^2$.

Ответы: А(15 м); В(25 м); С(35 м); Д(45 м); Е(55 м).

6. Скорый поезд, длиной $\ell=150$ м, движется со скоростью $\upsilon=25$ м/с. За какой промежуток времени, поезд пройдет мимо человека, стоящего около железной дороги?

Ответы: A(2 c); B(4 c); C(6 c); Д(8 c); E(10 c).

7. Какой должна быть минимальная длина (в км) взлетной полосы, если скорость $\upsilon=100$ м/с, необходимая для отрыва от земли, развивается в течение t=90 с. с момента старта?

Ответы: А(6 км); В(7 км); С(8 км); Д(9 км); Е(10 км).

8. Камень падает, без начальной скорости, с высоты h=80 м. Определить его среднюю скорость.

Ответы: A(20 м/c); B(30 м/c); C(40 м/c); Д(50 м/c); E(60 м/c).

9. Двигаясь равномерно, тело на некотором пути за t=12 с уменьшает свою скорость от $v_0=7$ м/с до $v_t=1$ м/с. Определить отрицательное ускорение тела на этом пути.

Ответы: A(-0.4 M/c); B(-0.5 M/c); C(-0.6 M/c); Д(-0.7 M/c); E(-0.8 M/c).

10. Имея начальную скорость v_0 =2 м/с, тело начало двигаться равноускоренно и на пути s=120 м увеличивает скорость в 4 раза. Найти ускорение тела.

Ответы: $A(0,25 \text{ м/c}^2)$; $B(0,35 \text{ м/c}^2)$; $C(0,45 \text{ м/c}^2)$; $Д(0,55 \text{ м/c}^2)$; $E(0,65 \text{ м/c}^2)$.

11. Тело, двигаясь равномерно за t_1 =5 с проходит расстояние s_1 =40 м. Какое расстояние (s_2) проходит тело за t_2 =10 с?

Ответы: A(50 м); B(60 м); C(70 м); Д(80 м); E(90 м).

12. Какая из этих формул описывает скорость свободного падения?

Ответы: $A(v_t=a\cdot t); \ B(v_t=v_0+a\cdot t); \ C(v_t=v_0+g\cdot t); \ Д(s=at^2/2); \ E(s=v_0t+at^2/2).$

13. Парашютист опускаются с постоянной скоростью $\upsilon=5$ м/с. За сколько времени приземлится парашютист, находясь на высоте h=30 м,? Ускорение свободного падения g=10 м/с².

Ответы: A(4 c); B(5 c); C(6 c); Д(7 c); E(8 c).

14. С крыши многоэтажного дома, высотой h=80 м, оторвались капли. За какой промежуток времени капли достигнут земли? Ускорение свободного падения $g=10 \text{ m/c}^2$.

Ответы: A(2 c); B(4 c); C(6 c); Д(8 c); E(10 c).

15. Тело брошено вверх со скоростью $\upsilon=14$ м/с. Найти высоту подъема тела. Ускорение свободного падения g=10 м/с².

Ответы: A(6,8 м); B(7,8 м); C(8,8 м); Д(9,8 м); E(10,8 м).

16. Аэростат поднимается вертикально вверх с ускорением a=4 м/с². Через t=5 с от начала движения из него опустили металлический шарик. Через какой промежуток времени шарик достигнет земли?

Ответы: A(2,16 c); B(3,16 c); C(4,16 c); Д(5,16 c); E(6,16 c).

17. По одному направлению из одной точки одновременно начали двигаться два тела: одно равноускоренно с ускорением $a=2 \text{ m/c}^2$, а другое – равномерно со скоростью v=10 m/c. Через какой промежуток времени первое тело догонит второе.

Ответы: A(60 c); B(80 c); C(100 c); Д(120 c); E(140 c).

18. При подходе к станции поезд, имеющий скорость v_0 =15 м/с, начинает тормозить, и поезд останавливается (v_t =0) через t=10 с. На каком расстоянии от станции началось торможение?

Ответы: А(45 м); В(55 м); С(65 м); Д(75 м); Е(85 м).

19. Автомобиль, имеющий отрицательное ускорение a=-0,8 м/с 2 остановился через t=12 с. Определить начальную скорость автомобиля.

Ответы: A(8,6 м/c); B(9,6 м/c); C(10,6 м/c); Д(11,6 м/c); E(12,6 м/c).

20. Найдите скорость тела, упавшего с высоты h=5 м, в момент его приземления. Ускорение свободного падения $g=10 \text{ m/c}^2$.

Ответы: A(10 м/c); B(20 м/c); C(30 м/c); Д(40 м/c); E(50 м/c).

21. По горизонтальному проводнику длиной ℓ =0,2 м и массой m=2·10⁻³ кг течет ток силой J=5 А. Определить магнитную индукцию (В) поля, в котором нужно поместить проводник, чтобы он висел, т.е. не падал. Ускорение свободного падения g=10 м/с².

Ответы: A(0,02 Тл); B(0,04 Тл); C(0,06 Тл); Д(0,08 Тл); E(0,10 Тл)

22. Определить магнитную индукцию поля (B), в котором на рамку с током J=5 А действует момент силы M=0,02 Нм. Площадь рамки $S=2\cdot 10^{-2}$ м².

Ответы: A(0,2 Тл); B(0,3 Тл); C(0,4 Тл); Д(0,5 Тл); E(0,6 Тл)

23. Протон описал окружность радиусом R=0.05 м в однородном магнитном поле с индукцией B=0.02 Тл. Определить скорость (в ед. км/с) протона. Отношение заряда протона к его массе $e/m=10^8$ Кл/К.

Ответы: A(40 км/c); B(60 км/c); C(80 км/c); Д(100 км/c); E(120 км/c)

24. В контуре из проводника магнитный поток изменился за Δt =0,3 с от Φ_1 =0,02 Вб до Φ_2 =0,08 Вб. Найти силу тока в контуре, если сопротивление проводника R=0,2 Ом.

Ответы: A(1 A); B(2 A); C(3 A); Д(4 A); E(5 A)

25. При равномерном изменении силы тока в контуре от J_1 =2 A до J_2 =8 A в течение Δt =0,1с в ней возникает ЭДС самоиндукции ε_s =6 В. Определить индуктивность катушки.

Ответы: $A(0,1 \ \Gamma_H); \ B(0,1 \ \Gamma_H); \ C(0,1 \ \Gamma_H); \ Д(0,1 \ \Gamma_H); \ E(0,1 \ \Gamma_H)$

26. Сила тока в катушке изменяется на $\Delta J=50~A$ в течении $\Delta t=0,1$ с. Индуктивность катушки $L=0,2~\Gamma$ н. Определить значение ЭДС самоиндукции.

Ответы: А(70 В); В(80 В); С(90 В); Д(100 В); Е(110 В)

27. Какова должна быть сила тока в катушке с индуктивностью L=0,4 Γ н, чтобы энергия магнитного поля была равна W=20 Дж?

Ответы: А(4 A); В(6 A); С(8 A); Д(10 A); Е(12 А)

28. Электрон движется в однородном магнитном поле с индукцией B=0,2 Тл. Его скорость равна θ = 10^7 м/с и направлена под углом φ = 30^0 к линиям поля. Вычислить силу, действующую на электрон в магнитном поле. Заряд электрона e=1,6·10⁻¹⁹ Кл.

Ответы: $A(0,6\cdot10^{-13} \text{ H}); B(1,6\cdot10^{-13} \text{ H}); C(2,6\cdot10^{-13} \text{ H}); Д(3,6\cdot10^{-13} \text{ H}); E(4,6\cdot10^{-13} \text{ H})$ 29. Электрический ток в цепи равен J=4 A, если напряжение в сети U=120 B. Какое сопротивление имеет участок цепи?

Ответы: А(20 Ом); В(30 Ом); С(40 Ом); Д(50 Ом); Е(60 Ом)

30. Найти силу тока в участке цепи с сопротивлением R=25 Ом, если напряжение участка цепи равно U=75 В.

Ответы: А(1 A); В(2 A); С(3 A); Д(4 A); Е(5 А)

31. Найти частоту излучения фотона, обладающего энергией ε =3,31·10⁻¹⁹ Дж. Постоянная Планка h=6,62·10⁻³⁴ Дж·с.

Ответы: $A(5\cdot10^{14} \,\Gamma \text{ц}); \ B(6\cdot10^{14} \,\Gamma \text{ц}); \ C(7\cdot10^{14} \,\Gamma \text{ц}); \ Д(8\cdot10^{14} \,\Gamma \text{ц}); \ E(9\cdot10^{14} \,\Gamma \text{ц})$

32. Найти длину волны фотона, обладающего энергией ε =3,31·10⁻¹⁹ Дж. Постоянная План-ка h=6,62·10⁻³⁴ Дж·с. Скорость света c=3·10⁸ м/с.

Ответы: $A(5\cdot10^{-7} \text{ m}); \ B(6\cdot10^{-7} \text{ m}); \ C(7\cdot10^{-7} \text{ m}); \ Д(8\cdot10^{-7} \text{ m}); \ E(9\cdot10^{-7} \text{ m})$

33. Найти массу фотона, обладающего энергией $\varepsilon=3,6\cdot10^{-19}$ Дж. Скорость света $c=3\cdot10^8$ м/с.

Ответы: $A(2\cdot 10^{-36}~{\rm kr});~B(3\cdot 10^{-36}~{\rm kr});~C(4\cdot 10^{-36}~{\rm kr});~ {\cluber \mu}(5\cdot 10^{-36}~{\rm kr});~E(6\cdot 10^{-36}~{\rm kr})$

34. Мощность излучения Солнца составляет $N=4\cdot10^{26}$ Вт. На сколько уменьшится масса Солнца за t=2,3 с. Скорость света $c=3\cdot10^8$ м/с.

Ответы: $A(10^7 \text{ кг}); \ B(10^8 \text{ кг}); \ C(10^9 \text{ кг}); \ Д(10^{10} \text{ кг}); \ E(10^{11} \text{ кг})$

35. Работа выхода электрона из металла кадмия A=4,08 эВ. На поверхность металла падает излучение с энергией фотона ε=6 эВ. Определить максимальную кинетическую энергию электрона в этих же единицах, т.е. в эВ.

Ответы: A(1,32 3B); B(1,62 3B); C(1,92 3B); Д(2,22 3B); E(2,52 3B)

36. Работа выхода электрона из алюминия A=4,25 эВ. Максимальная кинетическая энергия, вылетающих электронов $W_k=1,25$ эВ. Определить энергию (ϵ) фотона, вызывающего фотоэффект в тех же единицах, т.е. в эВ.

Ответы: $A(5,5 \ 3B)$; $B(6,5 \ 3B)$; $C(7,5 \ 3B)$; $D(8,5 \ 3B)$; $D(8,5 \ 3B)$; $D(8,5 \ 3B)$

37. Красная граница фотоэффекта для цинка $\lambda_k=3,31\cdot10^{-7}$ м. Определить работу выхода электрона (A). Постоянная Планка $h=6,62\cdot10^{-34}$ Дж·с. Скорость света $c=3\cdot10^8$ м/с.

Ответы: $A(5\cdot10^{-19}\ Дж);\ B(6\cdot10^{-19}\ Дж);\ C(7\cdot10^{-19}\ Дж);\ Д(8\cdot10^{-19}\ Дж);\ E(9\cdot10^{-19}\ Дж)$

38. Определить импульс фотона с длиной волны $\lambda=1,66\cdot10^{-7}$ м. Постоянная Планка $h=6,62\cdot10^{-34}$ Дж·с.

Ответы: $A(2\cdot10^{-27}\ \text{kg·m/c});\ B(3\cdot10^{-27}\ \text{kg·m/c});\ C(4\cdot10^{-27}\ \text{kg·m/c});\ Д(5\cdot10^{-27}\ \text{kg·m/c});$ $E(6\cdot10^{-27}\ \text{kg·m/c})$

39. С фотона из металла с энергией ε =8,5 эВ выбыл электрон с кинетической энергией W_k =0,5 эВ. Найти работу выхода электрона из металла в тех же единицах, т.е. в эВ.

Ответы: $A(2 \ni B)$; $B(4 \ni B)$; $C(6 \ni B)$; $D(8 \ni B$

40. Фотон с энергией ε =3,75 эВ вызывает фотоэффект. Найти кинетическую энергию (в эВ) фотоэлектрона, если работа выхода для данного металла равна A=2,25 эВ.

Ответы: А(1,5 эВ); В(2,5 эВ); С(3,5 эВ); Д(4,5 эВ); Е(5,5 эВ)

Разработчик: