МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Высшая математика»
Направление подготовки — 38.03.01 «Экономика»
Профиль подготовки - «Бухгалтерский учет»
Форма подготовки — очная
Уровень подготовки — бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства науки и высшего образования РФ №970 от 12.08.2020 г.

При разработке рабочей программы учитываются

- содержание программ дисциплин/модулей, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от «28» августа 2023г.

Рабочая программа утверждена УМС <u>Естественнонаучного факультета</u>, протокол № 1 от « 28 » <u>августа</u> 2023г.

Рабочая программа утверждена Ученым советом <u>Естественнонаучного</u> факультета, протокол № 1 от«29 » 08. 2023г.

Заведующий кафедрой к.ф-м.н., доцент

Гаибов Д.С.

Зам.председателя УМС факультета

Шодиева Т.Г.

Разработчик: к.ф.-м.н., доцент

Каримов О.Х.

Расписание занятий дисциплины

Таблица 1

Ф.И.О. преподавателя	Аудиторн	ные занятия	Приём СРС	Место работы преподавателя	
•	лекция	Практические занятия (КСР, лаб.)		•	
Каримов О.Х ГаибовД.С.(лектор).					

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Целями дисциплины «Высшая математика» являются:

- воспитание достаточно высокой математической культуры;
- привитие навыков математического мышления;
- привитие навыков использования математических методов и основ математического моделирования в практической деятельности;
- умение сводить задачи принятия решений в экономике к математическим моделям, используя методы линейной алгебры;
- овладение математическими методами, использующими теорию матриц при моделировании экономических задач;
- умение анализировать совместность системы линейных уравнений и получать их решение;
- овладение математическими методами, использующимися при моделировании экономических задач;
- использование геометрических объектов при постановке и решении задач оптимизации в экономике.

1.2. Задачи изучения дисциплины:

Задачами дисциплины «Высшая математика» являются:

- повышение уровня фундаментальной математической подготовки студентов с усилением ее прикладной экономической направленности;
- ознакомить студентов с основами математического аппарата, необходимого для решения теоретических и практических задач;
- привить студентам умение самостоятельно изучать учебную литературу по математике и ее приложениям;
- развить логическое и алгоритмическое мышление;
- выработать навыки математического исследования прикладных вопросов и умение перевести экономическую задачу на математический язык.

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

таблица2

Коды ком-	Результаты	Перечень планируемых результатов обучения по	Вид оценоч-
петенции	освоения	дисциплине	ного средства
	ОПОП		
	Содержание		
	компетенций		
УК-1	Способен	ИУК-1.1. Методы критического анализа и оценки	Выступление
	осуществлять	современных научных достижений; основные	
	поиск,	принципы критического анализа;	
	критический	ИУК-1.2. Получать новые знания на основе	
	анализ и синтез	анализа, синтеза и других методов; собирать	
	информации,	данные по сложным научным проблемам,	
	применять	относящимися к профессиональной области;	

	системный	осуществлять поиск информации и решений на	Коллоквиум
	подход для	основе экспериментальных действий;	
	решения	ИУК-1.3. Навыками исследования проблем	
	поставленных	профессиональной деятельности с применением	
	задач	анализа, синтеза и других методов	
		интеллектуальной деятельности; выявления	
		научных проблем и использования адекватных	
		методов для их решения; демонстрирования	Дискуссия
		оценочных суждений в решении проблемных	
		профессиональных ситуаций.	
ОПК-1	Осуществлять	ИОПК-1.1. владеет современными методами	Выступление
	сбор,	экономического анализа, математической	
	обработку и	статистики и эконометрики для решения	
	статический	теоретических и прикладных задач;	
	анализ данных,	ИОПК-1.2. работать с национальными и	
	необходимых	международными базами данных с целью поиска	
	для решения	необходимой информации об экономических	
	поставленных	явлениях и процессах;	
	экономических	ИОПК-1.3. обрабатывать экономическую	Коллоквиум
	задач	информацию и получать экономически	
		обоснованные выводы;	
		ИОПК-1.4. осуществлять наглядную	
		визуализацию данных;	
		ИОПК-1.5. анализировать и содержательно	п
		интерпретировать полученные результаты;	Дискуссия
		ИОПК-1.6. проводить экономические тесты и	
		строить доверительные интервалы.	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Высшая математика» относится к циклу обязательных дисциплин. Студенты, обучающиеся по данной программе должны иметь знания и практические навыки по высшей и элементарной математике в соответствии с требованиями к студентам высших учебных заведений. Она является базовой дисциплиной математического и естественнонаучного цикла (Б1.О.13), изучается на 1-2 семестре (на 1-3 семестре заочного отделения).

Дисциплины 1 и 5 взаимосвязаны с данной дисциплиной, они изучаются параллельно, вместе с тем часть их необходимо как предшествующее. Теоретическими дисциплинами, для которых освоение данной дисциплины необходимо как предшествующее являются:2-4.

Таблина 3.

No	Название дисциплины	Семестр	Место дисциплины в структуре ОПОП
1.	Микроэкономика	1-2	Б1.О.18
2.	Бухгалтерский учет и анализ	3-4	Б1.О.22
3.	Статистика	1-2	Б1.О.14

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем дисциплины «Высшая математика» составляет:

1 семестр: 4 зачетные единицы, всего 144 часа, из которых: лекции - 16 часов, практические занятия - 16 часов, КСР - 16 часов, самостоятельная работа - 42 часа+54 часа контроль, всего часов аудиторной нагрузки - 48 часов, в том числе в интерактивной форме - 11 часов, экзамен;

2 семестр: 4 зачетные единицы, всего 144 часа, из которых: лекции - 16 часов, практические занятия - 16 часов, КСР - 16 часов, самостоятельная работа - 42 часа+54 часа контроль, всего часов аудиторной нагрузки - 48 часов, в том числе в интерактивной форме - 11 часов, экзамен;

3.1. Структура и содержание теоретической части курса

I семестр

Тема 1. Раздел 1. Матрицы и определители

- 1.1. Действия над матрицами.(Умножение на число. Сложение матриц. Транспонирование Умножение прямоугольных матриц) 2 часа
- **Тема** 2. 1.2. Обратная матрица (критерий существования обратной матрицы; построение обратной матрицы с помощью алгебраических дополнений и методом Гаусса) 2 часа

Тема 3. Раздел 2. Векторная алгебра

- 2.1. Определители второго и третьего порядков и их свойства. (Основные определения. Вычисление определителей. Определитель n-го порядка) 2 часа
- **Тема** 4. 2.3. Скалярное произведение векторов: его выражение через координаты. Угол между векторами(Основные понятия. Скалярное произведение. Нахождение угла между векторами) 2 часа

Тема 5. Раздел 3. Системы линейных уравнений

- 3.1. Однородные системы и свойства их решений. (Фундаментальная система решений. Размерность подпространства решений однородной системы) – 2 часа
- **Тема** 6. 3.3. Матричный метод решения системы линейных уравнений. (Матричные уравнения. Метод Гаусса для отыскания решения системы) 2 часа

Тема 7. Раздел 4. Евклидовы пространства. Линейные операторы

4.1. Скалярное произведение (Свойства скалярного произведения; скалярные произведения в различных пространствах) – 2 часа

Тема 8. Раздел 6. Аналитическая геометрия на плоскости

6.2. Прямая на плоскости. (Различные формы уравнения прямой на плоскости. Нормальное уравнение прямой на плоскости. Углы, образуемые двумя прямыми на плоскости) – 2 часа

Итого 16ч

II семестр

Тема 1. Раздел 1. Введение в математический анализ

1.1. Множества. Функция.

(Операции с множествами. Декартово произведение множеств. Множество вещественных чисел. Область определения функции) – 2 часа

Тема 2. Раздел 2. Предел и непрерывность функции

(Основные понятия о числовых последовательностях. Предел числовой последовательности) – 2 часа

Тема 3. Раздел 3. Дифференциальное исчисление функций одной переменной

3.1. Определение производной в точке и на множестве.

(Геометрический и экономический смысл производной в точке. Уравнения касательной и нормали) – 2 часа

Тема 4. 3.3. Дифференцирование сложных функций, неявных функций и функций, заданных параметрическими уравнениями. Производные высших порядков

(Способы дифференцирования, понятие неявных функций, функции заданные параметрически. Нахождение производных высших порядков) – 2 часа

Тема 5. Раздел 4. Исследование функций

(Определение монотонных функций. Достаточные признаки монотонности. Точки экстремума и экстремум функции. Необходимые и достаточные условия экстремума. Наименьшее и наибольшее значения функции на отрезке и на интервале) – 2 часа

Тема 6. Раздел 5. Неопределённый интеграл

(Первообразная и неопределенный интеграл) – 2 часа

Тема 7. 5.2. Методы интегрирования тригонометрических функций. Многочлены (Методы интегрирования, понятие многочлен) – 2 часа

Тема 8. Раздел 6. Определённый интеграл

(Определение определенного интеграла как предела интегральной суммы. Теорема существования. Основные свойства определенного интеграла) – 2 часа

Итого 16ч

3.2. Структура и содержание практической части курса

I сесместр

Тема 1. Раздел 1. Матрицы и определители

1.2. Обратная матрица – 2 часа

Тема 2. Раздел 2. Векторная алгебра

2.2. Разложение определителей по элементам строки и столбца. Теорема Лапласа. Умножение определителей. Вектор и его модуль. Декартовы координаты векторов и точек – 2 часа

Тема 3. Раздел 3. Системы линейных уравнений

3.2. Системы линейных уравнений с несколькими неизвестными (общая теория). Решение систем и линейных уравнений с *n* неизвестными. Правило Крамера – 2 часа

Тема 4. Раздел 4. Евклидовы пространства. Линейные операторы

4.2. Неравенство Коши-Буняковского. Ортогональный и ортонормированный базис. Процесс ортогонализации. Координаты вектора в ортонормированном базисе – 2 часа

Тема 5. Раздел 5. Билинейные и квадратичные формы

- 5.1. Стандартный вид квадратичной формы, изменение при невырожденном линейном преобразовании, канонический вид. Положительная и отрицательная определенная квадратичная формы. Приведение квадратичной формы к сумме квадратов. Метод Лагранжа. Закон инерции 2 часа
- **Тема** 6. 5.2. Положительно и отрицательно определенные квадратичные формы. Знакоопределенные квадратичные формы. Критерий Сильвестра 2 часа

Тема 7. Раздел 6. Аналитическая геометрия на плоскости

- 6.1. Прямоугольная система координат на плоскости и в пространстве. Расстояние между двумя точками. Расстояние от точки до прямой. Деление отрезка в данном отношении. Площадь треугольника 2 часа
- **Тема** 8. 6.3. Взаимное расположение прямых на плоскости. Смешанные задачи, относящиеся к уравнению прямой на плоскости. Параметрическое и общее уравнения плоскости. Условия компланарности вектора плоскости. Взаимное расположение двух плоскостей. Плоскость. Общее уравнение. Неполное уравнение. Нормальное уравнение. Прямая как пересечение двух плоскостей. Взаимное расположение двух плоскостей. Взаимное расположение прямой и плоскости в пространстве 2 часа

Итого 16ч

II -семестр

Тема 1. Раздел 1. Введение в математический анализ

Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики -2 часа

Тема 2. Раздел 2. Предел и непрерывность функции

- 2.1. Окрестность точки. Предел функции в точке и в бесконечности. Односторонние пределы. Бесконечно малые, бесконечно большие, ограниченные функции и их свойства 2 часа
- **Тема** 3. 2.3. Непрерывность функции в точке. Односторонняя непрерывность. Точки разрыва функции первого и второго рода. Формулировки основных свойств непрерывных функций. Непрерывность элементарных функций 2 часа

Тема 4. Раздел 3. Дифференциальное исчисление функций одной переменной

- 3.2 Дифференцируемость функции и её связь с непрерывностью функции в точке. Дифференциал функции и его геометрический смысл. Формулы и правила дифференцирования 2 часа
- **Тема** 5. 3.3. Дифференцирование сложных функций, неявных функций и функций, заданных параметрическими уравнениями. Производные высших порядков 2 часа

Тема 6. Раздел 4. Исследование функций

4.2. Выпуклость и вогнутость, точки перегиба и асимптоты графика функции. План полного исследования и построения графика функции – 2 часа

Тема 7. Раздел 5. Неопределённый интеграл

5.2. Метод непосредственного интегрирования. Метод интегрирования заменой переменной. Метод интегрирования по частям – 2 часа

Тема 8. 5.2. Методы интегрирования тригонометрических функций. Многочлены – 2 часа

Итого 16ч

3.3. Структура и содержание КСР І семестр

- **Тема 1.** Элементарные преобразования Гаусса над строками матрицы (вычисление ранга матрицы, ранг суммы и произведения матриц). Линейная зависимость и независимость строк и столбцов матрицы. Теорема о базисном миноре -2 часа
- **Тема 2.** Свойства определителей. Транспозиция и перестановки. Миноры и алгебраические дополнения 2 часа
- **Тема 3.** Вычисление векторного и смешанного произведения векторов через их координаты. Их основные свойства и геометрический смысл. Базис. Ранг системы векторов 2 часа
- **Тема 4**. Метод последовательного исключения неизвестных. Метод Жордано-Гаусса. Теорема Кронекера-Капелле 2 часа
 - **Тема 5.** Знакоопределенные квадратичные формы. Критерий Сильвестра 2 часа
 - **Тема 6**. Углы, образуемые двумя прямыми на плоскости 2 часа
- **Тема 7.** Плоскость. Общее уравнение. Неполное уравнение. Нормальное уравнение. Прямая как пересечение двух плоскостей. Взаимное расположение двух прямых в пространстве. Взаимное расположение прямой и плоскости в пространстве 2 часа
- **Тема 8.** Взаимное расположение двух прямых в пространстве. Угол между прямой и плоскостью. Угол между двумя плоскостями -2 часа

Итого 16ч

II семестр

- **Тема** 1. Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел 2 часа
 - **Тема** 2. Число e. Второй замечательный предел 2 часа
- **Тема** 3. Геометрический и экономический смысл производной в точке. Уравнения касательной и нормали -2 часа
- **Тема** 4. Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции 2 часа
- **Тема** 5. Необходимые и достаточные условия экстремума. Наименьшее и наибольшее значения функции на отрезке и на интервале 2 часа
 - **Тема** 6. Свойства неопределенного интеграла. Таблица основных интегралов 2 часа
- **Тема** 7. Интегрирование рациональных дробей. Интегрирование простейших иррациональных функций 2 часа
 - **Тема** 8. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница 2 часа

Итого 16ч Таблипа 4

		Виды	учебн	ой ра-			
		боті	ы, вклю	гар			
NC-	Роздан	самос	тоятел	ьную			
№	Раздел	работу ст		нтов и		Лит-ра	Кол-во
п/п	дисциплины	труд	оемкос	ть (в		•	баллов
		часах)					за
		Лек.	Пр.	КСР	CPC		неделю
		І семестр					
1	Лк. Матрицы и определители.	2	_			1 - 7	
	Действия над матрицами						
	КСР: Элементарные						
	преобразования Гаусса над						
	строками матрицы (вычисление			2			
	ранга матрицы, ранг суммы и				2		

	произведения матриц). Тема СРС: Умножение на число. Сложение матриц. Ранг суммы и произведения матриц						
2	Лк. Обратная матрица Пр. Матрицы и определители. Обратная матрица Тема СРС: Решение задач по теореме о базисном миноре Нахождение обратной матрицы методом Гаусса	2	2	ı	4	1 – 7	12,5
3	Лк. Векторная алгебра. Определители второго и третьего порядков и их свойства КСР: Свойства определителей. Транспозиция и перестановки. Миноры и алгебраические дополнения Тема СРС: Вычисление определителей. Нахождение миноров и алгебраических дополнений	2	_	2	2	1 – 7	12,5
4	Пр. Векторная алгебра. Тема СРС: Умножение определителей. Декартовы координаты векторов и точек	-	2	_	4	1 – 7	12,5
5	Лк. Скалярное произведение векторов: его выражение через координаты. Угол между векторами. КСР: Вычисление векторного и смешанного произведения векторов через их координаты. Их основные свойства и геометрический смысл. Базис. Ранг системы векторов Тема СРС: Скалярное произведение векторов. Вычисление векторного и смешанного произведения векторов через их координаты	2		2	2	1 – 7	12,5
6	Лк. Системы линейных уравнений. Однородные системы и свойства их решений. Тема СРС: Вычисление однородных линейных систем. Вычисление систем линейных уравнений методом Крамера	2		-	4	1 – 7	12,5
7	Пр. Системы линейных уравнений. Тема СРС: Вычисление систем линейных уравнений матричным методом. Решение системы	_	2	_	2	1 – 7	12,5

	линейных уравнений теоремой Кронекера-Капелле. Метод Жордано-Гаусса.						
8	Лк. Матричный метод решения системы линейных уравнений. КСР: Метод последовательного исключения неизвестных. Метод Жордано-Гаусса. Теорема Кронекера-Капелле Тема СРС: Скалярное произведение в различных пространствах.	2	_	2		1 – 7	12,5
	Координаты вектора в ортонормированном базисе			2	4		
9	Лк. Евклидовы пространства.	2				1 – 7	12,5
	Линейные операторы. Скалярное произведение. Тема СРС: Примеры нахождения подпространств. Вычисление проекции вектора на подпространство				2		,-
10	Пр. Евклидовы пространства. Линейные операторы Тема СРС: Положительная и отрицательная определенная квадратичная формы. Приведение квадратичной формы к сумме квадратов	_	2	_	4	1 – 7	12,5
11	Пр. Билинейные и квадратичные формы Тема СРС: Критерий Сильвестра. Вычисление ортогональных матриц	-	2	_	2	1 – 7	12,5
12	Пр. Положительно и отрицательно определенные квадратичные формы. Знакоопределенные квадратичные формы. Критерий Сильвестра Тема СРС: Деление отрезка в данном отношении. Нахождение площади треугольника. Вычисление уравнения прямой на	-	2	_		1 – 7	12,5
13	плоскости КСР: Знакоопределенные квадратичные формы. Критерий Сильвестра Тема СРС: Углы, образуемые двумя прямыми на плоскости. Вычисление смешанных задач, относящихся к уравнению прямой на плоскости	-	_	2	2		12,5
14	Пр. Аналитическая геометрия на плоскости	_	2	2	2	1 – 7	12,5

	П		1				1
	Прямоугольная система координат						
	на плоскости и в пространстве.						
	КСР: Углы, образуемые двумя						
	прямыми на плоскости						
	Тема СРС: Условия						
	компланарности вектора						
	плоскости. Неполное и						
	нормальное уравнение						
15	Лк. Аналитическая геометрия	2	_			1 - 7	12,5
	на плоскости Прямая на						
	плоскости.						
	КСР: Плоскость. Общее						
	уравнение. Неполное уравнение.						
	Нормальное уравнение. Прямая						
	как пересечение двух						
	плоскостей.						
	Тема СРС: Взаимное			2			
	расположение прямой и плоскости						
	в пространстве. Взаимное						
	расположение двух прямых в						
	пространстве				2		
16	Пр. Взаимное расположение		2			1 – 7	12,5
10	прямых на плоскости.		_			1 /	12,5
	Смешанные задачи, относящиеся						
	к уравнению прямой на плоскости.						
	1						
	двух прямых в пространстве. Угол						
	между прямой и плоскостью. Угол						
	между двумя плоскостями						
	Тема СРС: Нахождение угла						
	между двумя плоскостями. На-			2			
	хождение гиперболы, окружности,				2		
	параболы	1.6	1.0	1.0	2		200
	Итого по семестру:	16	16	16	42		200
		II cei	местр				
1	Лк. Введение в математический	2	-	_		1 – 7	12,5
1	анализ. Множества. Функция.	_				, ,	12,5
	Тема СРС: Операции над						
	множествами Область						
	определение функции. Сложные и						
	обратные функции. Нахождение						
	-						
	предела функции. Предел						
	функции в точке и в				2		
	бесконечности		2		2		10.5
2	Пр. Сложные и обратные	-	2	-			12,5
	функции. График функции.						
	Основные элементарные						
	функции, их свойства и графики						
	Тема СРС: Решение задач по						
	первому замечательному пределу.				4		

	Решение задач по второму						
	замечательному пределу						
3	Пр. Предел и непрерывность		2			1 – 7	12,5
	функции. Окрестность точки.						,-
	Предел функции в точке и в						
	бесконечности.						
	КСР: Формулировки основных						
	теорем о пределах функций. Ос-						
	новные виды неопределенностей.						
	Первый замечательный предел			2			
	Тема СРС: Вычисление						
	уравнения касательной и нормали.						
	Определение производной в точке						
	и на множестве. Формулы и						
	правила дифференцирования.						
	Примеры решений				2		
4	Лк. предел и непрерывность	2				1 – 7	12,5
-	функции	_				,	12,0
	КСР: Число е. Второй						
	замечательный предел			2			
	Тема СРС: Основные теоремы			_			
	дифференциального исчисления:						
	теорема Ферма, теорема Ролля,						
	теорема Лагранжа, теорема Коши,						
	правило Лопиталя и применение						
	его к нахождению предела						
	функции. Примеры решений				4		
5	Пр. Непрерывность функции в		2			1 – 7	12,5
	точке. Односторонняя						,
	непрерывность.						
	Тема СРС: Нахождение						
	наименьшего и наибольшего						
	значения функции на отрезке и на						
	интервале. Выпуклость и						
	вогнутость, точки перегиба и						
	асимптоты графика функции				2		
6	Лк. Дифференциальное	2				1 - 7	12,5
	исчисление функций одной пе-						·
	ременной. Определение						
	производной в точке и на						
	множестве.						
	КСР: Геометрический и			2			
	экономический смысл про-						
	изводной в точке. Уравнения						
	касательной и нормали						
	Тема СРС: План полного						
	исследования и построения						
	графика функции. Вычисление						
	неопределенного интеграла						
	методом непосредственного						
	интегрирования. Таблица						
	основных интегралов				4		

7	Пр. Дифференцируемость		2			1 – 7	12,5
/	функции и её связь с не-					1 - /	12,5
	прерывностью функции в точке.						
	Тема СРС: Вычисление						
	неопределенного интеграла						
	методом интегрирования заменой						
	переменной. Примеры решений.						
	1 1 1						
	1 1						
	1 1				2		
0	Теорема Безу. Примеры решений.	2	2			1 – 7	12.5
8	Лк. Дифференцирование	2	2			1 - I	12,5
	сложных функций, неявных						
	функций и функций, заданных						
	параметрическими						
	уравнениями. Производные						
	высших порядков.						
	Пр. Дифференцирование						
	сложных функций, неявных						
	функций и функций, заданных						
	параметрическими						
	уравнениями.						
	Тема СРС: Интегрирование						
	рациональных дробей. Примеры						
	решений. Интеграл с переменным						
	верхним пределом. Формула						
	Ньютона-Лейбница				4		10.7
9	КСР: Основные теоремы			2		1 - 7	12,5
	дифференциального						
	исчисления: теорема Ферма,						
	теорема Ролля, теорема Ла-						
	гранжа, теорема Коши, правило						
	Лопиталя и применение его к						
	нахождению предела функции						
	Тема СРС: Вычисление						
	определенного интеграла методом						
	замены переменной и методом				_		
	интегрирования по частям				2		10.7
10	Лк. Исследование функций	2				1 - 7	12,5
	КСР: Необходимые и						
	достаточные условия экстре-			2			
	мума. Наименьшее и						
	наибольшее значения функции						
	на отрезке и на интервале						
	Тема СРС: Операции над						
	комплексными числами.						
			1	Ī			1
	Алгебраические						
	тригонометрические формы.				_		
	тригонометрические формы. Формулы Муавра и Эйлера.				4		
11	тригонометрические формы. Формулы Муавра и Эйлера. Пр. Исследование функций		2		4	1 – 7	12,5
11	тригонометрические формы. Формулы Муавра и Эйлера. Пр. Исследование функций Тема СРС: Решение		2		4	1 – 7	12,5
11	тригонометрические формы. Формулы Муавра и Эйлера. Пр. Исследование функций		2		2	1 – 7	12,5

	Дифференциальное уравнения Бернулли. Дифференциальные уравнения в полных дифференциалах. Интегрирующий						
12	множитель. Лк. Неопределённый интеграл КСР: Свойства неопределенного интеграла. Таблица основных	2				1 – 7	12,5
	интегралов Тема СРС: Решение дифференциальных уравнении высших порядков способом понижения их порядка. Решение линейно-однородного дифференциального уравнения второго порядка с постоянными коэффициентами.			2	2		
13	Пр. Неопределённый интеграл. Метод непосредственного интегрирования Тема СРС: Решение дифференциальных уравнений, когда отсутствует независимая переменная. Решение линейнооднородного дифференциального уравнения высших порядков с постоянными коэффициентами		2		2	1 – 7	12,5
14	Лк. Методы интегрирования тригонометрических функций. Многочлены. Пр. Методы интегрирования тригонометрических функций. Многочлены Тема СРС: Решение линейнонеоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.	2	2		2	1 – 7	12,5
15	КСР: Интегрирование рациональных дробей. Интегрирование простейших иррациональных функций Тема СРС: Необходимый признак сходимости числового ряда. Гармонический ряд. Нахождения суммы числового ряда			2	2	1 – 7	12,5
16	Лк. Определённый интеграл КСР: Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница Тема СРС: Основные признаки сходимости числовых рядов:	2			2	1 – 7	12,5

Даламбера, Коши. Теорема			2		
Лейбница. Абсолютно и условно					
сходящиеся знакочередующиеся					
ряды.					
Итого по семестру:	16	16	16	42	200

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль. Студенты <u>1 курсов</u>, обучающиеся по кредитно-рейтинговой системе обучения, могут получить максимально возможное количество баллов - 300. Из них на текущий и рубежный контроль выделяется 200 баллов или 49% от общего количества.

На итоговый контроль знаний студентов выделяется 51% или 100 баллов.

Порядок выставления баллов: 1-й рейтинг (1-7 недели до 12,5 баллов+12,5 баллов (8 неделя — Рубежный контроль №1) = 100 баллов), 2-й рейтинг (9-15 недели до 12,5 баллов+12,5 баллов (16 неделя — Рубежный контроль №2) = 100 баллов), итоговый контроль 100 баллов.

К примеру, за текущий и 1-й рубежный контроль выставляется 100 баллов: лекционные занятия — 21 балл, за практические занятия (КСР, лабораторные) — 31,5 балл, за СРС — 17,5 баллов, требования ВУЗа — 17,5 баллов, рубежный контроль — 12,5 баллов.

В случае пропуска студентом занятий по уважительной причине (при наличии подтверждающего документа) в период академической недели деканат факультета обращается к проректору по учебной работе с представлением об отработке студентом баллов за пропущенные дни по каждой отдельной дисциплине с последующим внесением их в электронный журнал.

Итоговая форма контроля по дисциплине (экзамен) проводится как в форме тестирования, так и в традиционной (устной) форме. Тестовая форма итогового контроля по дисциплине предусматривает: для естественнонаучных направлений — 10 тестовых вопросов на одного студента, где правильный ответ оценивается в 10 баллов. Тестирование проводится в электронном виде, устный экзамен на бумажном носителе с выставлением оценки в ведомости по аналогичной системе с тестированием.

Таблица 5

для студентов 1 курсов

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практических (семинарских) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Всего
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5

2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр для студентов 1-х курсов:

$$ME = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0,49 + 3u \cdot 0,51$$

, где ИБ — итоговый балл, P_1 - итоги первого рейтинга, P_2 - итоги второго рейтинга, Эи — результаты итоговой формы контроля (экзамен).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и практическую составляющие обучения. При этом обеспечивается упорядочивание теоретических знаний, что, в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная работа планируется и организуется с целью углубления и расширения теоретических знаний, формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Высшая математика» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- Активная работа на лекциях
- Активная работа на практических занятиях

- Контрольно-обучающие программы тестирования (КОПТ).
- Выполнение контрольных работ.
 Внеаудиторная работа проводится в следующих видах:
- Проработка лекционного материала,
- Подготовка к практическим занятиям,
- Подготовка к аудиторным контрольным работам,
- Выполнение ИДЗ,
- Подготовка к защите ИДЗ,
- Подготовка к зачету, экзамену.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Высшая математика» включает в себя:

таблица 6

			1	таолица о
№ п/п	Объем СРС в часах	Тема СРС	Форма и вид СРС	Форма контроля
1	2	Умножение на число. Сложение матриц. Ранг суммы и произведения матриц	Письменное решение упражнений и задач. ИДЗ	Защита работы
2	4	Решение задач по теореме о базисном миноре Нахождение обратной матрицы методом Гаусса	Письменное решение упражнений и задач. ИДЗ	Защита работы
3	2	Вычисление определителей. Нахождение миноров и алгебраических дополнений	Письменное решение упражнений и задач. ИДЗ	Защита работы
4	4	Умножение определителей. Декартовы координаты векторов и точек	Письменное решение упражнений и задач. ИДЗ	Защита работы
5	2	Скалярное произведение векторов. Вычисление векторного и смешанного произведения векторов через их координаты	Письменное решение упражнений и задач. ИДЗ	Защита работы
6	4	Вычисление однородных линейных систем. Вычисление систем линейных уравнений методом Крамера	Письменное решение упражнений и задач. ИДЗ	Защита работы
7		Вычисление систем линейных уравнений матричным методом. Решение системы линейных уравнений теоремой Кронекера-Капелле. Метод	Письменное решение упражнений и задач. ИДЗ	Защита работы
8	4	Жордано-Гаусса. Скалярное произведение в различных пространствах. Координаты вектора в ортонормированном базисе	Письменное решение упражнений и задач. ИДЗ	Защита работы
9	2	Примеры нахождения подпространств. Вычисление проекции вектора на подпространство	Письменное решение упражнений и задач. ИДЗ	Защита работы
10	4	Положительная и отрицательная определенная квадратичная формы. Приведение квадратичной формы к сумме квадратов	-	Защита работы
11	2	Критерий Сильвестра. Вычисление ортогональных матриц	Письменное решение упражнений и задач. ИДЗ	Защита работы
12	2	Деление отрезка в данном отношении. Нахождение площади треугольника. Вычисление уравнения прямой на	Письменное решение упражнений и задач. ИДЗ	Защита работы

		плоскости			
13	2	Углы, образуемые двумя прямыми на плоскости. Вычисление смешанных задач, относящихся к уравнению прямой на плоскости		Защита работы	
14	2	Условия компланарности вектора плоскости. Неполное и нормальное уравнение	Письменное решение упражнений и задач. ИДЗ	Защита работы	
15	2	Взаимное расположение прямой и плоскости в пространстве. Взаимное расположение двух прямых в пространстве	Письменное решение упражнений и задач. ИДЗ	Защита работы	
16	2	Нахождение угла между двумя плоскостями. Нахождение гиперболы, окружности, параболы	Письменное решение упражнений и задач. ИДЗ	Защита работы	
Итог	го: 42 ча	aca			
	ı	ІІ семестр			
1	2	Операции над множествами Область определение функции. Сложные и обратные функции. Нахождение графика функции Вычисление предела функции. Предел функции в точке и в бесконечности	Письменное решение упражнений и задач. ИДЗ	ащита работы	
2	4	Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу	Письменное решение 3 упражнений и задач. ИДЗ	Защита работы	
3	2	Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений	Письменное решение упражнений и задач. ИДЗ	Защита работы	
4	4	Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений	Письменное решение упражнений и задач. ИДЗ	Защита работы	
5	2	Нахождение наименьшего и наибольшего значения функции на отрезке и на интервале. Выпуклость и вогнутость, точки перегиба и асимптоты графика функции	Письменное решение упражнений и задач. ИДЗ	Защита работы	
6	4	План полного исследования и построения графика функции. Вычисление неопределенного интеграла методом непосредственного интегрирования. Таблица основных интегралов	Письменное решение упражнений и задач. ИДЗ	Защита работы	
7	2	Вычисление неопределенного интеграла методом интегрирования заменой переменной. Примеры решений. Методы интегрирования тригонометрических	Письменное решение упражнений и задач. ИДЗ	Защита работы	

		функций. Теорема Безу. Примеры решений.		
8	4	Интегрирование рациональных дробей. Примеры решений. Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница	Письменное решение упражнений и задач. ИДЗ	Защита работы
9	2	Вычисление определенного интеграла методом замены переменной и методом интегрирования по частям	Письменное решение упражнений и задач. ИДЗ	Защита работы
10	4	Операции над комплексными числами. Алгебраические тригонометрические формы. Формулы Муавра и Эйлера. Сложение (вычитание), умножение, деление и извлечение корня комплексных чисел. Решение алгебраических уравнений различных порядков.	Письменное решение упражнений и задач. ИДЗ	Защита работы
11	2	Решение обыкновенных дифференциальных уравнений. Дифференциальное уравнения Бернулли. Дифференциальные уравнения в полных дифференциалах. Интегрирующий множитель.	Письменное решение упражнений и задач. ИДЗ	Защита работы
12	2	Решение дифференциальных уравнении высших порядков способом понижения их порядка. Решение линейнооднородного дифференциального уравнения второго порядка с постоянными коэффициентами.	Письменное решение упражнений и задач. ИДЗ	Защита работы
13	2	Решение дифференциальных уравнений, когда отсутствует независимая переменная. Решение линейнооднородного дифференциального уравнения высших порядков с постоянными коэффициентами.	Письменное решение упражнений и задач. ИДЗ	Защита работы
14	2	Решение линейно-неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.	Письменное решение упражнений и задач. ИДЗ	Защита работы
15	2	Необходимый признак сходимости числового ряда. Гармонический ряд. Нахождения суммы числового ряда.	Письменное решение упражнений и задач. ИДЗ	Защита работы
16	2	Основные признаки сходимости числовых рядов: Даламбера, Коши. Теорема Лейбница. Абсолютно и условно сходящиеся знакочередующиеся ряды.	Письменное решение упражнений и задач. ИДЗ	Защита работы
Итог	ю: 42 ча	aca		

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Индивидуальные домашние задания (ИДЗ) по дисциплине «Высшая математика» предназначены для студентов очной форм обучения нематематических факультетов, изучающих курс математики в соответствии с требованиями Федеральных государственных образовательных стандартов (ФГОС) по соответствующим направлениям подготовки. Работа содержит 12 индивидуальных домашних заданий (ИДЗ) по 30 вариантов в каждом, содержащих различные задания по дисциплине «Высшая математика».

Целью настоящего комплекта ИДЗ является ознакомление студентов с основами линейной алгебры и началами математического анализа. При решении заданий по линейной алгебре учащиеся отработают навыки действий с определителями и матрицами, а также решения систем неоднородных и однородных линейных алгебраических уравнений. При решении заданий по математическому анализу студенты освоят технику вычисления пределов функции, получат навыки исследования функций одной переменной с применением аппарата дифференциального исчисления.

В целом, самостоятельное решение индивидуальных заданий позволяет углубить теоретические знания, отработать практические навыки решения задач по дисциплине. Во введении к работе приведены примеры решения типовых заданий по теме с необходимыми методическими указаниями.

Накопление большого количества оценок за ИДЗ, самостоятельные и контрольные работы в аудитории позволяет контролировать учебный процесс, управлять им, оценивать качество усвоения изучаемого материала.

4.3. Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета. Рисунки выполняются простыми карандашами. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Ф.И.О. студента, направление, курс и группа.

4.4. Критерии оценки выполнения самостоятельной работы по дисциплине «Высшая математика»

Критериями для оценки самостоятельной работы могут служить:

- точность ответа на поставленный вопрос;
- формулировка целей и задач работы;
- раскрытие (определение) рассматриваемого понятия (определения, проблемы, термина);
- четкость структуры работы;
- самостоятельность, логичность изложения;
- наличие выводов, сделанных самостоятельно.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Основная литература

1. Курбанов, И.К. Высшая математика [Текст] : учебник для студентов нематемат. спец. / И. К. Курбанов, Р. К. Раджабов ; Рос.-Тадж. (славян.) ун-т. - 2-е изд., перераб. и доп. - Душанбе : [б. и.], 2013. - 363 с.

- 2. Высшая математика для экономического бакалавриата в 3 ч. Часть 1 [Текст]: учебник и практикум для академического бакалавриата / под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 276 с.
- 3. Высшая математика для экономического бакалавриата в 3 ч. Часть 2 [Текст]: учебник и практикум для академического бакалавриата / под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 241 с.
- 4. Высшая математика для экономического бакалавриата в 3 ч. Часть 3 [Текст]:: учебник и практикум для академического бакалавриата / под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2023. 418 с.
- 5. *Кремер, Н. Ш.* Высшая математика для экономического бакалавриата [Электронный ресурс]: учебник и практикум / Н. Ш. Кремер; под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2014. 909 с.
- 6. *Клюшин, В. Л.* Высшая математика для экономистов. Задачи, тесты, упражнения [Электронный ресурс]: учебник и практикум для бакалавриата и специалитета / В. Л. Клюшин. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2019. 165 с.

7. 5.2. Дополнительная литература

- 1. Высшая математика для экономистов, под ред. Проф. Н.Ш. Кремера, 3-е издание М.: Юнити, 2006.-478c.
- 2. Общий курс высшей математики для экономистов, под. общ. ред., проф. В.И. Ермакова, М.: Инфра, М., 2007. 655 с.
- 3. Сборник задач по высшей математике для экономистов, под общ. ред., проф. В.И. Ермакова М.: Инфра, М., 2007. 574 с.

Интернет-ресурсы:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com

ЭЛЕКТРОННО-БИБЛИОТЕЧНЫЕ СИСТЕМЫ

- 1. ЭБС «Издательство Лань» [Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». Режим доступа https://e.lanbook.com/;
- 2. ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». Режим доступа https://biblio-online.ru/;

ПЕРЕЧЕНЬ ЛИЦЕНЗИОННОГО ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 1. Windows Serwer 2019;
- 2. ILO:
- 3. ESET NOD32

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины: Работа с литературой — 1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету – 5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать,

наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Умение находить область определения и множество значений, нули функции, промежутки знакопостоянства и монотонности, точки экстремума — залог успешного решения задач единого экзамена. Можно выделить два обобщенных умения, связанных с исследованием свойств функций:

- 1) уметь «читать» график функции и переводить его свойства с графического языка на алгебраический и наоборот;
- 2) уметь работать с формулой, задающей функцию, обосновывая или проверяя наличие указанных свойств, что связывает задачи данного блока и с другими темами школьного курса (решение уравнений и неравенств, вычисление производных и др.)

В подготовке к решению подобных заданий поможет таблица, в которой перечислены свойства функций и дан их перевод на язык графиков.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса алгебры и начала анализа.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

При проведении занятий по дисциплине «Высшая математика» используются как классические формы и методы обучения (лекции, практические занятия), так и активные методы обучения (контрольно-обучающие программы тестирования по всем разделам изучаемого материала, работа с ЭУК при подготовке к занятиям, контрольным работам и рейтингового контроля.). Применение любой формы обучения предполагает также использование новейших IT-обучающих технологий.

При проведении лекционных занятий по дисциплине «Высшая математика» целесообразно использовать мультимедийное презентационное оборудование, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Преподаватель использует компьютерные и мультимедийные средства обучения (презентации, содержащиеся в ЭУК), мультимедиа лекции, а также наглядно-иллюстрационные (в том числе раздаточные) материалы.

Материально-техническое обеспечение образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья.

Для обеспечения доступности получения образования по образовательным программам инвалидами и ЛОВЗ в образовательном процессе используется специальное оборудование. Практически все аудитории университета оснащены мультимедийным оборудованием (проектор, экран, ПК), что позволяет доступно и наглядно осуществлять обучение студентов, в том числе студентов с нарушением слуха и зрения. Используемые современные лабораторные комплексы обладают высокой мобильностью, что позволяет использовать их для организации образовательного процесса для студентов с нарушениями опорно-двигательного аппарата.

Для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорнодвигательного аппарата, созданы условия для беспрепятственного доступа на прилегающую территорию, в здания университета, учебные аудитории, столовые и другие помещения, а также безопасного пребывания в них. На территории университета есть возможность подъезда к входам в здания автомобильного транспорта, выделены места парковки автотранспортных средств. Входы в университет оборудованы пандусами, беспроводной системой вызова помощи. Информативность доступности нужного объекта университета для людей с ограниченной функцией зрения достигается при помощи предупреждающих знаков, табличек и наклеек. Желтыми кругами на высоте 1,5 м от

уровня пола оборудованы стеклянные двери. Первые и последние ступени лестничных маршей маркированы желтой лентой. Для передвижения по лестничным пролетам инвалидов – колясочников приобретен мобильный подъемник – ступенькоход. В учебном корпусе оборудована универсальная туалетная комната в соответствии с требованиями, предъявляемыми к подобным помещениям.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации <u>экзамен на 1 семестре</u>, экзамен на 2 семестре.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица 7

Оценка по буквенной системе	Диапазон соответствующих наборных баллов	Численное выражение оценочного балла	Оценка по традиционной системе	
A		Uajijia		
A	10	95-100	Отлично	
	9	90-94		
B+	8	85-89		
В	7	80-84	Хорошо	
В-	6	75-79		
C+	5	70-74		
C	4	65-69		
C-	3	60-64	Vyon yomnomymovy vo	
D+	2	55-59	Удовлетворительно	
D	1	50-54		
Fx	0	45-49	11	
F	0	0-44	Неудовлетворительно	

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC$ BO.

 ΦOC по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ΦOC по дисциплине прилагается.