МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Методы оптимизации»
Направление подготовки – 01.03.01«Математика»
Профиль подготовки: «Общая математика»
Форма подготовки – очная
Уровень подготовки – бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ №8 от 10.01.2018г.

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению / специальности;
- содержание программ дисциплин/модулей, изучаемых на предыдущих и последующих этапах обучения;

новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от «28» августа 2023 г.

Рабочая программа утверждена УМС естественнонаучного факультета, протокол № 1 от «28 » августа 2023 г.

Рабочая программа утверждена Ученым советом естественнонаучного факультета, протокол № 1 от «29» августа 2023 г.

Заведующий кафедрой

Гаибов Д.С.

Зам.председателя УМС факультета

, Абдулхаева Ш.Р.

Разработчик К.ф.-м.н., доцент:

Jeers

Гулбоев Б.Дж.

Разработчик от организации:

Каримов О.Х

Расписание занятий дисциплины

Таблица 1

Ф.И.О.	Аудиторные занятия		Приём	Место работы
преподавателя	лекция	Практические занятия (КСР, лаб.)	CPC	преподавателя
Гулбоев Б.Дж.				

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

дисциплины «Методы оптимизации» учебной формирование у обучающихся общие представление об основах теории необходимых экстремальных задач; получение концептуальных существующих представлений, достаточных для понимания, оценки алгоритмов решения оптимизационных задач и ознакомление с базовыми математическими методами.

1.2. Задачи изучения дисциплины

Задачей данной дисциплины является изучение алгоритмов решения задач условного и безусловного экстремума функции, задачи линейного программирования.

1.3. Требования к результатам освоения дисциплины:

результате изучения данной дисциплины обучающихся формируются следующие общекультурные (универсальные)/ общепрофессиональные/ профессиональнопрофессиональные специализированные, профессионально-дополнительные компетенции (элементы компетенций)

Таблица 2

	1		Таолица 2.
Код	Формируемая	Содержание этапа формирования компетенции	Вид оценочного
	компетенция		средства
ОПК-1	ОПК-1	ИОПК-1.1. Применяет фундаментальные	Устный опрос
	Способен	знания, полученные в области математических	
	применять	и (или) естественных наук	
	фундаменталь	ИОПК-1.2 Использует фундаментальные	
	ные знания,	знания, полученные в области математических	Коллоквиум
	полученные в	и (или) естественных наук в профессиональной	
	области	деятельности	
	математическ	ИОПК -1.3 Обладает необходимыми знаниями	
	их и (или)	для исследования математических и их	
	естественных	компонент	
	наук, и		Дискуссия
	использовать		
	ИХ В		
	профессионал		
	ьный		
	деятельности		
ОПК-3	ОПК-3.	ИОПК-3.1 Выявлять научные знание в области	Устный опрос
	Способен	математики и информатики;	
	использовать в	ИОПК - 3.2 Способен к применению основных	
	педагогическо	положений теории и методики обучения	
	й деятельности	математике в конкретных педагогических	
	научные	условиях;	
	знания в сфере	ИОПК -3.3 Знать основные направления и	
	математики и	проблематику современной математики;	Коллоквиум
	информатики	ИОПК - 3.4 Решать исследовательские	

		математические задачи на основе конструирования новых или реконструкции уже известных способов и приемов.	Дискуссия
ПК-4	ПК-4. Способен формировать способность к логическому рассуждению, убеждению, математическо му доказательству	ИПК-4.1. Анализирует предлагаемое обучающимся рассуждение с результатом: подтверждает его правильность или находит ошибки и анализирует причины их возникновения; помогает обучающимся в самостоятельной локализации ошибки, ее исправлении; оказание помощи в улучшении рассуждения; ИПК-4.2 Формирует способности к	Тестирование Контрольная работа Устный опрос
	и подтверждени ю его правильности	логическому рассуждению и коммуникации, установки на использование этой способности, на ее ценность. ИПК-4.3 Формирует у обучающихся убеждение в абсолютности математической истины и математического доказательства, предотвращать формирование модели поверхностной имитации действий, ведущих к успеху, без ясного понимания смысла; поощрять выбор различных путей в решении поставленной задачи	
ПК-5	ПК-5. Способен организовать исследовани я в области математики	ИПК-5.1 Организует самостоятельную деятельность обучающихся, в том числе исследовательскую; ИПК-5.2 Развивает инициативы обучающихся по использованию математики и научной исследование; ИПК-5.3 Владеет основными положениями классических разделов математической науки, базовыми идеями и методами математики, системой основных	Устный опрос Коллоквиум
		математических структур и аксиоматическим методом.	Дискуссия

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

2.1 Цикл (раздел) ООП, к которому относится данная дисциплина

Дисциплина «Методы оптимизации» включена в вариативную часть профессионального цикла (Б1.В.17), является обязательной дисциплиной в освоении математических знаний. К исходным требованиям, необходимым для изучения дисциплины «Методы оптимизации», относятся знания, умения и виды деятельности, сформированные в процессе изучения дисциплин:

Таблица 3.

			1
№	Название дисциплины	Семестр	Место дисциплины в
			структуре ООП

1	Математический анализ	1-4	Б1.О.05
2	2 Аналитическая геометрия		Б1.О.06
3	Высшая алгебра	1-3	Б1.О.04
4	Дифференциальные уравнения	3-4	Б1.О.10
5	Технология программирования и работа на ЭВМ	3-4	Б1.В.11

Дисциплины 1-5, приведенные в табл. 2, являются «входными» знаниями для изучения дисциплины «Методы оптимизации».

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Объем дисциплины «Методы оптимизации» составляет 2 зачётные единицы, всего 72 ч., из которых: лекции -20 ч., практические занятия -10 ч., КСР -10 ч., самостоятельная работа -32 ч., всего часов аудиторной нагрузки -40 ч., в том числе всего часов в интерактивной форме 12 ч. Экзамен -8-ой семестр.

3.1. Структура и содержание теоретической части курса

Тема 1. Общая постановка задачи оптимизации и основные положения — 2 часа. Задача поиска минимума функций. Задача поиска максимума функции. Задача поиска минимума и максимума целевой функции. Глобальный минимум функции. Поверхность уровня функции. Градиент непрерывно дифференцируемой функции. Матрица Гессе. Квадратичная форма.

- **Тема 2.** Необходимые и достаточные условия безусловного экстремума 2 часа. Необходимые условия экстремума первого порядка. Необходимые условия экстремума второго порядка. Достаточные условия экстремума. Критерий проверки достаточных условий экстремума. Критерий проверки необходимых условий экстремума второго порядка.
- **Тема 3.** Необходимые и достаточные условия условного экстремума: постановка задачи и основные определения 2 часа. Обобщенная функция Лагранжа. Градиент обобщенной функции Лагранжа. Второй дифференциал функции Лагранжа. Первый дифференциал функции Лагранжа.
- **Тема 4.** Условный экстремум при ограничениях типа равенств 2 часа. Необходимые условия экстремума первого порядка. Необходимые условия экстремума второго порядка. Достаточные условия экстремума.
- **Тема 5.** Условный экстремум при ограничениях типа неравенств 2 часа. Необходимые условия минимума (максимума) первого порядка. Достаточные условия минимума (максимума) первого порядка. Необходимые условия минимума (максимума) второго порядка. Достаточные условия минимума (максимума) второго порядка.
 - **Тема 6.** Условный экстремум при смешанных ограничениях -2 часа.

Необходимые условия минимума (максимума) первого порядка. Достаточные условия минимума (максимума) первого порядка. Достаточные условия минимума (максимума) второго порядка.

Тема 7. Методы решения задач линейного программирования. Симплекс-метод Данцига: решение канонической задачи -2 часа. Решение канонической задачи. Способы нахождения начального базисного решения. Переход от одного базисного решения к другому.

- **Тема 8.** Методы решения задач линейного программирования. Симплекс-метод Данцига: решение основной задачи 2 часа. Постановка задачи. Стратегия поиска. Алгоритм решения задачи.
- **Тема 9.** Двухфазный симплекс-метод 2 часа. Постановка задачи. Стратегия поиска. Первая фаза. Вторая фаза. Алгоритм решения задачи.
- **Тема 10.** Метод решения задач линейного целочисленного программирования. Метод ветвей и границ 2 часа. Постановка задачи. Стратегия поиска. Алгоритм решения задачи. Сходимость.

Итого 20ч

3.2. Структура и содержание практической части курса

Занятие 1. Определения стационарных точек экстремума. Проверка знакоопределенности матрицы Гессе целевой функции – 2 часа.

Занятие 2. Определение условного экстремума целевой функции – 2 часа.

Занятие 3. Определение условного экстремума целевой функции при ограничениях типа неравенств – 2 часа.

Занятие 4. Определение экстремума функции симплекс-методом – 2 часа.

Занятие 5. Определение экстремума функции двухфазным симплексметодом – 2 часа.

Итого 10ч

3.3. Структура и содержание КСР

Занятие 1. Определение безусловного экстремума целевой функции – 2 часа.

Занятие 2. Определение условного экстремума целевой функции при ограничениях типа равенств -2 часа.

Занятие 3. Определение условного экстремума целевой функции при смешанных ограничениях – 2 часа.

Занятие 4. Определение экстремума функции симплекс-методом – 2 часа.

Занятие 5. Нахождение оптимальных решений задачи – 2 часа.

Итого 10ч Таблица 4

							i aom	
№ п/п	Раздел дисциплины	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			Лит- ра	Кол-во баллов в недел ю		
		Лек.	Пр.	Лаб.	КСР	CPC		
	VIII cemeca	гр						
1.	Тема 1. Общая постановка задачи оптимизации	2					1-3	11,5
	и основные положения							
	Занятие 1. Определения стационарных точек		2				1-3	
	экстремума. Проверка знакоопределенности							
	матрицы Гессе целевой функции							
2.	Тема 2. Необходимые и достаточные условия	2					1-3	11,5
	безусловного экстремума							
	Занятие 2. Определение безусловного				2	6	1-3	
	экстремума целевой функции							
3.	Тема 3. Необходимые и достаточные условия	2					1-3	11,5
	условного экстремума: постановка задачи и							
	основные определения							
	Занятие 3. Определение условного экстремума		2				1-3	
	целевой функции							

4.	Тема 4. Условный экстремум при ограничениях	2				1-3	11,5
	типа равенств						
	Занятие 4. Определение условного экстремума			2	6	1-3	
	целевой функции при ограничениях типа						
	равенств						
5.	Тема 5. Условный экстремум при ограничениях	2				1-3	11,5
	типа неравенств						
	Занятие 5. Определение условного экстремума		2			1-3	
	целевой функции при ограничениях типа						
	неравенств						
6.	Тема 6. Условный экстремум при смешанных	2				1-3	11,5
	ограничениях						
	Занятие 6. Определение условного экстремума			2	6	1-3	
	целевой функции при смешанных ограничениях						
7.	Тема 7. Методы решения задач линейного	2				1-3	11,5
	программирования. Симплекс-метод Данцига:						
	решение канонической задачи	_					
	Тема 8. Методы решения задач линейного	2				1-3	
	программирования. Симплекс-метод Данцига:						
	решение основной задачи						
8.	Занятие 7. Определение экстремума функции		2			1-3	11,5
	симплекс-методом			_			
	Занятие 8. Определение экстремума функции			2	6	1-3	
	симплекс-методом						
9.	Тема 9. Двухфазный симплекс-метод	2				1-3	11,5
	Занятие 9. Определение экстремума функции		2			1-3	
	двухфазным симплекс-методом						
10.	Тема 10. Метод решения задач линейного	2				1-3	11,5
	целочисленного программирования. Метод						
	ветвей и границ						
	Занятие 10. Нахождение оптимальных решений			2	8	1-3	
	задачи						
		20	10	10	32		100
	ı						

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль.

Итоговая форма контроля по дисциплине (экзамен) проводится в форме тестирования.

Таблица 5

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ	Активное участие на практических (семинарских) занятиях, лабораторных, КСР	СРС Написание реферата и выполнен ие других видов работ	Админи стратив ный балл за пример ное поведен ие	Балл за рубежн ый и итогов ый контрол ь	Всего
1	2	3	4	5	6	7
1	4	3	2,5	2	_	11,5

2	4	3	2,5	2	1	11,5
3	4	3	2,5	2	1	11,5
4	4	3	2,5	2	1	11,5
5	4	3	2,5	2	1	11,5
6	4	3	2,5	2	-	11,5
7	4	3	2,5	2	-	11,5
8	4	3	2,5	2		11,5
9	пер	овый рубежный ко	нтроль		8	
10	4	3	2,5	2	-	11,5
11	4	3	2,5	2	-	11,5
12	4	3	2,5	2	-	11,5
13	4	3	2,5	2	ı	11,5
14	4	3	2,5	2	-	11,5
15	4	3	2,5	2	-	11,5
16	4	3	2,5	2	-	11,5
17	4	3	2,5	2		
18 второй рубежный контроль					8	
Всего:	64	48	40	32	16	200
Итоговый контроль (экзамен)						100
Итого:	64	48	40	32	116	300

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр <u>для студентов 4-х курсов</u>:

$$ME = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0,49 + 3u \cdot 0,51$$

, где $\mathit{ИБ}$ — $\mathit{итоговый}$ балл, P_{I} - итоги первого рейтинга, P_{2} - итоги второго рейтинга, $\mathit{Эu}$ — результаты итоговой формы контроля (экзамен).

4.УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ CAMOCTOЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Методы оптимизации» включает в себя:

- 1. план-график выполнения самостоятельной работы по дисциплине, в том числе примерные нормы времени на выполнение по каждому заданию;
- 2. характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению;
- 3. требования к представлению и оформлению результатов самостоятельной работы;

критерии оценки выполнения самостоятельной работы.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Методы оптимизации» включает в себя:

Таблица6

№ п/п	Объем СРС в ч.	Тема СРС	Форма и вид СРС	Форма контроля
1	6	Определение безусловного экстремума целевой функции	Письменное решение упражнений и задач	Защита работы
2	6	Определение условного экстремума целевой функции при ограничениях	Письменное решение упражнений и задач	Защита работы

		типа равенств		
3	6	Определение условного экстремума целевой функции при смешанных ограничениях	Письменное решение упражнений и задач	Защита работы
4	6	Определение экстремума функции симплекс-методом	Письменное решение упражнений и задач	Защита работы
5	8	Нахождение оптимальных решений задачи программирования. Метод ветвей и границ	Письменное решение упражнений и задач	Защита работы
	Всего	32 часа		

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Представленные темы для самостоятельной работы студентов охватывают основные разделы курса высшей математики и предназначены для освоения теоретического и практического материала по данному курсу. Выполнения указанных самостоятельных работ будет способствовать в повышении математической культуры обучающихся, которое выражается в логическом мышлении и принятии рационального решения в задачах профессиональной деятельности.

Для выполнения самостоятельных работ следует, предварительно, повторить теоретический материал по соответствующей теме. Затем, ознакомиться с методическими пособиями (некоторые из них приведены в списке литературы данной рабочей программы), посвященных в подробном решении задач, а потом приступить к выполнению самостоятельной работы.

4.3. Требования к представлению и оформлению результатов самостоятельной работы

Самостоятельная работа приводится в письменной форме в отдельной тетради в клеточку для самостоятельных работ. На титульном листе указывается название изучаемой дисциплины, ФИО студента, курс и направление обучения. Все решения задач для самостоятельной работы должны быть аккуратно и подробно расписаны. В задачах, где необходимо геометрические иллюстрации обязательно выполняется чертеж. Рисунки необходимо рисовать с использованием карандаша. При этом не допускается зачеркивание или замазывание содержания самостоятельной работы в случае ошибок. Выполненные самостоятельные работы сдаются на проверку преподавателю в строго оговоренные преподавателям сроки. В противном случае преподаватель в праве не принять выполненную самостоятельную работу. Если после проверке самостоятельной работы преподавателем замечены ошибки и неточности, то тетрадь возвращает студенту для замечаний. Срок исправления замечаний исправления ДЛЯ также оговаривается преподавателем.

Самостоятельная работа, выполненная со всеми указанными выше требованиями, будет считаться принятой, и со стороны преподавателя, в конце выполненной работы, фиксируется дата принятия и подпись.

В случае переполнения тетради для самостоятельной работы она сдается преподавателю для хранения на кафедре и заводится новая тетрадь.

Тетради по самостоятельной работе в конце изучения курса сдаются преподавателю для хранения на кафедре.

4.4. Критерии оценки выполнения самостоятельной работы

Самостоятельные работы, выполненные в соответствии всеми требованиями, указанных в пункте 4.3, будут оцениваться согласно разделу «СРС: написание реферата, доклада, эссе, выполнение других видов работ» таблицы 4.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Токарев, В. В. Методы оптимизации [электронный ресурс]: учебное пособие для бакалавриата и магистратуры / В. В. Токарев. Москва: Издательство Юрайт, 2019. 440 с. https://biblio-online.ru
- 2. Методы оптимизации. Задачник [электронный ресурс]: учебное пособие для бакалавриата и магистратуры / В. В. Токарев, А. В. Соколов, Л. Г. Егорова, П. А. Мышкис. Москва: Издательство Юрайт, 2019. 292 с. https://biblio-online.ru
- 3. Никитин, А. А. Математический анализ. Сборник задач [электронный ресурс]: учебное пособие для академического бакалавриата / А. А. Никитин. Москва: Издательство Юрайт, 2019. 353 с. https://biblio-online.ru

Дополнительная литература:

- 4. Чебышёв, П. Л. Математический анализ / П. Л. Чебышёв; ответственный редактор И. М. Виноградов; составитель А. О. Гельфонд. Москва [электронный ресурс]: Издательство Юрайт, 2019. 393 с. https://biblioonline.ru
- 5. Математический анализ. Сборник заданий [электронный ресурс]: учебное пособие для вузов / В. В. Логинова [и др.]; под общей редакцией Е. Г. Плотниковой. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2019. 206 с. https://biblio-online.ru

Интернет-ресурсы:

- 1. https://urait.ru
- 2. http://math4school.ru
- 3. http://webmath.ru.
- 4. http://www-formula.ru/index.php

Электронно-библиотечные системы

- 1. ЭБС «Издательство Лань» [Электронный ресурс]: электронная библиотечная система / ООО «Издательство Лань». Режим доступа https://e.lanbook.com/;
- 2. ЭБС «Электронная библиотечная система ЮРАЙТ» [Электронный ресурс]: электронная библиотечная система / ООО «Электронное издательство ЮРАЙТ». Режим доступа https://biblio-online.ru/.

Перечень лицензионного программного обеспечения

- 1. Windows Serwer 2019;
- 2. ILO;
- 3. ESET NOD32.

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучению дисциплины; использовать литературу, рекомендуемую составителями данной рабочей программы; использовать вопросы к зачету, примерные контрольные работы.

Перед работой с научными источниками студенту следует обратиться к основной учебной литературе — учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам — справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение самостоятельной работы и т.д.).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «Методы оптимизации» оснащены проектором для проведения презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

Материально-техническое обеспечение образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья.

Для обеспечения доступности получения образования по образовательным программам инвалидами и ЛОВЗ в образовательном процессе используется специальное оборудование. Практически все аудитории университета оснащены мультимедийным оборудованием (проектор, экран, ПК), что позволяет доступно и наглядно осуществлять

обучение студентов, в том числе студентов с нарушением слуха и зрения. Используемые современные лабораторные комплексы обладают высокой мобильностью, что позволяет использовать их для организации образовательного процесса для студентов с нарушениями опорно-двигательного аппарата.

Для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата, созданы условия для беспрепятственного доступа на прилегающую территорию, в здания университета, учебные аудитории, столовые и другие помещения, а также безопасного пребывания в них. На территории университета есть возможность подъезда к входам в здания автомобильного транспорта, выделены места парковки автотранспортных средств. Входы в университет оборудованы пандусами, беспроводной системой вызова помощи. Информативность доступности нужного объекта университета для людей с ограниченной функцией зрения достигается при помощи предупреждающих знаков, табличек и наклеек. Желтыми кругами на высоте 1,5 м от уровня пола оборудованы стеклянные двери. Первые и последние ступени лестничных маршей маркированы желтой лентой. Для передвижения по лестничным пролетам инвалидов – колясочников приобретен мобильный подъемник – ступенькоход. В учебном корпусе оборудована универсальная туалетная комната в соответствии с требованиями, предъявляемыми к подобным помещениям.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации: экзамен в VIII семестре в тестовой форме

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Таблица 7

Оценка по буквенной	Диапазон соответствующих	Численное выражение	Оценка по традиционной системе
системе	наборных баллов	оценочного балла	
\mathbf{A}	10	95-100	Отлично
A-	9	90-94	Отлично
B+	8	85-89	
В	7	80-84	Хорошо
B-	6	75-79	
C+	5	70-74	
С	4	65-69	
C-	3	60-64	Vuonuornonymanyuo
D+	2	55-59	Удовлетворительно
D	1	50-54	
Fx	0	45-49	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.