МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Статистическая физика»

Направление подготовки — 03.03.02 «Физика» Профиль подготовки «Общая физика» Форма подготовки — очная Уровень подготовки — бакалавр

Рабочая программа составлена в соответствии с требованиями федерального образовательного государственного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ о т 07.08.2014г. № 937

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов ПО направлению;
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1от «28» <u>августа</u> 20<u>24</u>г.

Рабочая программа утверждена УМС Естественнонаучного факультета, протокол № 1 от «29» <u>августа 2024</u>г.

Рабочая программа утверждена Ученым советом Естественнонаучного факультета, протокол № 1 от «30» 08. 2024г.

Heeser. Заведующий кафедрой к.ф-м.н., доцент

Гулбоев Б.Дж..

Зам.председателя УМС факультета

Халимов И.И.

Разработчик: к.ф-м.н., доцент

Насрулоев Х.

Разработчик от организации

Акдодов Д.М.

Расписание занятий дисциплины

Таблица 1

Ф.И.О.	Ay	диторные занятия		Место работы	
преподавателя	лекция	Практические занятия (КСР, лаб.)	Приём СРС	преподавателя	
Насрулоев Х					

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Целями освоения учебной дисциплины «Статистическая физика» являются формирование у студентов общекультурных и профессиональных компетенций, установленных ФГОС ВО, в процессе изучения основных физических законов поведения систем многих частиц в газообразном, жидком и твердом состояниях.

1.2. Задачи изучения дисциплины

Задачами освоения учебной дисциплины «Статистическая физика» являются

- формирование фундаментальных представлений об основных понятиях распределениях статистической физики;
- изучение основных методов и подходов статистической физики;
- развитие навыков проведения необходимых расчетов физических характеристик равновесных и неравновесных макросистем и умения физически интерпретировать результаты этих расчетов;
- формирование правильной методологической и философской оценки физических закономерностей, наблюдаемых в неравновесных и равновесных макросистемах

1.3. Требования к результатам освоения дисциплины.

В результате изучения данной дисциплины у обучающихся формируются следующие общекультурные (универсальные)/ общепрофессиональные/ профессионально-специализированные, профессионально-дополнительные компетенции (элементы компетенций).

Таблица 2.

Коды ком-	Содержание	Перечень планируемых результатов	Виды оценочных
петенции	компетенции	обучения по дисциплине	средств
ОПК-3	способность	Знать: основные фундаментальные	Коллоквиум
	использовать	законы физики, иметь представление о	
	базовые	физических процессах и явлениях в	
	теоретические	макросистемах; физические модели,	
	знания	используемые для описания реальных	

фундаментальны	физических процессов в макросистемах;	
х разделов	основные методы и подходы	
общей и	термодинамики.	Устный опрос
теоретической	Уметь: разрабатывать наиболее	
физики для	подходящие модели для расчета	
решения	физических характеристик	
профессиональн	равновесных и неравновесных	
ых задач	макросистем; выполнять аналитические	
	расчеты, применять законы физики к	
	решению задач; давать физическую	
	интерпретацию результатов расчетов.	Дискуссия
	Владеть: основными методами и	
	подходами решения задач	
	термодинамики; методами расчета	
	физических характеристик равновесных	
	и неравновесных	

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

«Статистическая физика» относится к базовой части профессионального направленности (**Б1.Б.25**).

Изучается на 8 семестре и содержательно методически взаимосвязана с дисциплинами ООП, указанной в таблице 2

При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплинам 1-7, указанных в Таблице. Дисциплины 6 и 7 относятся к группе «входных» знаний, вместе с тем определенная их часть изучается параллельно с данной дисциплиной («входные-параллельные» знания). Дисциплины 8-9 взаимосвязаны с данной дисциплиной, они изучаются параллельно. Теоретическими дисциплинами и практиками, для которых освоение данной дисциплины необходимо как предшествующее являются:8-9.

Таблица 3

No	Название дисциплины	Семестр	Место дисциплины в структуре ООП
1.	Курс общей физики: механика	1	Б1.Б.13
2.	Курс общей физики: молекулярная физика.	1	Б1.Б.14
3.	Математический анализ	1	Б.1.Б.29
4.	Дифференциальные уравнения,	2	Б1.Б.05
5.	Теория вероятности и математическая статистика	5	Б.1.Б.07
6.	Термодинамика	7	Б1.Б.24
7.	Квантовая теория	6-7	Б1.Б.22
8.	Физическая кинетика	8	Б1.Б.26
9.	Физика конденсированного состояния	8-	Б1.Б.23

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Объем дисциплины «Статистическая физика» составляет 4 зачетных единиц, всего 144 часа, из которых: лекции — 24 часов, практические занятия — 12

часов, КСР -12 часов, самостоятельная работа -60 часов, всего часов аудиторной нагрузки -48 часов. Экзамен: 7-ой семестр.

3.1. Структура и содержание лекционной части курса -24 ч

Тема 1. Основные понятия и принципы статистической физики. -2.

Макроскопические и микроскопические состояния. Статистическое распределение. Ансамбль Гиббса. Теорема Лиувилля. Средние по времени. Приближение к равновесию. Основной постулат статистической физики.

Тема 2. Средние значения. Флуктуации. -2.

Нахождение среднего значения, дисперсии и флуктуации случайных величин.

Тема 3. Фазовое пространство. Теорема Лиувилля и ее свойства.-2.

Теорема Лиувилля. Средние по времени. Приближение к равновесию. Основной постулат статистической физики.

Тема 4. Канонические функции распределения -2 ч.

Микроскопическое описание состояния системы. Микроканоническое распределение.

- Тема 5. Каноническое распределение Гиббса. Большое каноническое распределение. Энтропия. Термодинамические соотношения. -2 ч.
- Тема 6. Распределение Максвелла-Больцмана. 2 ч.

Вывод уравнение Максвелла Многообразие вариантов распределения Максвелла и их взаимосвязь.

Тема 7. Распределение Больцмана.-2ч.

Вывод распределение Больцмана и барометрической формулы. Распределение Максвелла – Больцмана. Дискретное распределение Больцмана.

Тема 8. Теорема о равномерном распределении кинетической энергии и о вириале. 2ч.

Вычислить теплоемкость идеальных газов. Классическая теория теплоемкости твёрдых тел. Теория Эйнштейна.

Тема 9. Реальный газ. -2ч.

Вывод формулы Ван-дер Ваалса. Фазовые состояния. Критическая точка.

- Тема 10. Элементы квантовой статистической физики. Система тождественных частиц. 2 ч.
- Тема 11. Квантовые функции распределения. -2 ч. Квантовые системы. Вывод распределение Ферми - Дирака.
- Тема 12. Квантовые функции распределения (продолжение) 2 ч
 Вывод распределение Бозе-Эйнштейна. Излучения черного тела. Формула Планка

Структура и содержание практической части курса -12 ч

Тема 1. Основные представления, понятия и теоремы теории вероятности. Решение задач.

 Тема 2. Основные результаты термодинамического метода 	-2 ч.
Тема 3. Распределение Максвелла-Больцмана. Решение задач	-2 ч.
Тема 4. Фазовое пространства. Статистическое описание механической	Í
системы.	-2 ч.
Тема 5. Микроканоническое и каноническое распределение Гиббса и	
их приложения	-2 ч.
Тема 6. Вычисление свободной энергии некоторых простых систем	-2 ч.
3.3 Структура и содержание КСР - 12 ч.	
Тема 1. Распределение Максвелла – Больцмана. Вывод некоторых	параметров
идеального газа с применением распределение Максвел.	ла. Вывод
барометрическая формула	-2ч.
Тема 2. Статистическое описание механических систем. Теорема Луив	о кили
сохранение фазового объёма	- 2 ч
Тема 3. Микроканоническое и каноническое распределение Гиббса и	их
приложения	-2.
Тема 4. Равномерное распределение кинетической энергии по степеня	им свободы и
теорема о вириале -2.	
Тема 5. Теория флуктуации. Определение корреляционных моментов	-2 ч.

Тема 6. Квантовая статистика систем одинаковых частиц. Статистика Бозе-

Эйнштейна и Фермы

-2 ч.

	График проведения курса						аблица 4
	График	проведен	ия курса	l			
No	Раздел и темы	Виды учебной работы, включая самостоятельную работу				Лит-	Баллы за
п/п				• •	•		
11/11	дисциплины	•		удоемкость		pa	неделю
1		Лек.	Пр.	КСР	CPC		
1.	Основные понятия и принципы статистической физики.	2	_	_		1-6	
2.	Основные представления, понятия и теоремы теории вероятности. Решение задач.	_	2	_	6	1-6	
	Распределение Максвелла — Больцмана. Вывод некоторых параметров идеального газа с применением распределение Максвелла. Вывод барометрическая формула			2		1-6	
3.	Средние значения. Флуктуации. Нахождение среднего значения, дисперсии и флуктуации	2	_	_	4	1-6	
4.	Основные результаты термодинамического метода	_	2	-		1-6	
	Статистическое описание механических систем. Теорема	-	-	2	6	1-6	

	Луивилля о сохранение						
	фазового объёма						
5.	Фазовое пространство. Теорема						
	Лиувилля и ее свойства.	2	_	_	4	1-6	
	Микроскопическое описание						
	состояния квантовой системы.						
6.	Распределение Максвелла-	_	2	_		1-6	
	Больцмана. Решение задач				4		
	Микроканоническое и	-	-	2		1-6	
	каноническое распределение						
	Гиббса и их приложения						
7.	Классические функции						
	распределения.	2	_	_	6	1-6	
	Микроканоническое и						
	каноническое распределение.						
	Каноническое распределение						
	Гиббса. Статистическая						
	температура.						
8	Фазовое пространства.	_	2	-		1-6	
	Статистическое описание				4		
	механической системы.						
	Равномерное распределение	-	-	2		1-6	
	кинетической энергии по						
	степеням свободы и теорема о						
	вириале						
9.	Распределение Максвелла.						
	Многообразие вариантов	2	_	_	6	1-6	
	распределения Максвелла и их						
	взаимосвязь.						
10	Микроканоническое и				_	1 -	
	каноническое распределение	_	2	_	4	1-6	
	Гиббса и их приложения					1.6	
	Теория флуктуации. Определение	-	-	2		1-6	
1.1	корреляционных моментов						
11.	Распределение Больцмана. Вывод	2			4	1 .	
	барометрической формулы.	2	_	_	4	1-6	
	Распределение Максвелла –						
	Больцмана. Дискретное						
10	распределение Больцмана.		2			1.0	
12	Вычисление свободной энергии	_	2	-	4	1-6	
	некоторых простых систем.			2	4		
	Квантовая статистика систем	-	_				
	одинаковых частиц. Статистика Бозе-Эйнштейна и Фермы						
13.	Реальный газ. Теорема о равно-	2			4	1-6	
13.			_	_	4	1-0	
	мерном распределении кинетической энергии по степеням						
	ческой энергии по степеням свободы.						
14.	своооды.						
17.							
	Квантовые функции	2	_	_	4	1-5	
15	распределения. Распределение	_			T		
	граниродологии.		l	l	<u> </u>	<u> </u>	

Ферми-Дирака. Распределение Бозе-Эйнштейна.					
Итого по семестру:	24	12	12	60	

Примечание: в случае отсутствия лекционных занятий по дисциплине, баллы начисляются за активное участие в практических (семинарских) занятиях, КСР (см. графы 2 и 3 Таблицы с баллами).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа студентов рассматривается как одна из форм обучения, которая предусмотренная Федеральным Государственным образовательным стандартом и рабочим учебным планом по направления подготовки «Физика». Целью самостоятельной работы студентов является обучение навыками работы с учебной и научной литературой и практическими материалами, необходимыми для изучения курса «Физика» и развития у них способностей к самостоятельному анализу полученной информации.

В процессе изучения дисциплины, студенты должны выполнят следующие виды самостоятельной работ в указанной форме контроля и сроки выполнения.

4.1.План самостоятельной работы студента Таблица 5

No	Объем	Тема	Форма и	Форма
Π/Π	СРС в ч.	CPC	вид СРС	контроля
1	6	Необходимыесведенияизтеориивероятности.Алгебраслучайныхвеличин.Методнахождениявероятностисобытия,функциираспределенияфизическихвеличин	упражнений и задач.	Поощрение баллами
2	6	Применение распределение Максвелла –Больцмана для вычисления параметров идеального газа	Письменное решение упражнений и задач. ИДЗ	Поощрение баллами
3	6	Общая механическая модель. Фазовое пространства. Статистическое описание механических систем. Теорема Луивилля о сохранение фазового объёма	Письменное решение упражнений и задач. ИДЗ	Поощрение баллами
4	6	Уравнение движения статистического ансамбля . Решение задач	Письменное решение упражнений и задач. ИДЗ	Поощрение баллами
5	6	Равновесный статистический ансамбль. Микроканоническое и каноническое распределение Гиббса и их приложения	Письменное решение упражнений и задач. ИДЗ	Поощрение баллами
6	6	Вычисление свободной энергии идеального газа. Парадокс Гибсса. Решение задач.	Письменное решение упражнений и задач. ИДЗ	Поощрение баллами

7	6	Равномерное распределение кинетической энергии по степеням свободы и теорема о вириале. Приложение теоремы о равномерном распределение кинетической энергии по степеням свободы и теорему о вириале к конкретным системам	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
8	6	Вывод распределения Гиббса для систем с переменным числом частиц и её приложение к конкретным задачам	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
9	6	Теория флуктуации. Определение корреляционных моментов — основная задача теории флуктуации	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
10	6	Вычисление плотности вероятности произвольной обобщенной координаты. Теория Броуновского движения	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
11	6	Приложение общего метода Гиббса к некоторым конкретным системам. Вычисление временных корреляционных функций	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
12	6	Уравнение Эйштейна-Фокура-Планка. Исследование некоторых решений этого уравнения	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
13	6	Квантовый модель вещества. Каноническое распределение. Квантовый осциллятор. Формула Планка для равновесного излучения абсолютного черного тела.	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
14	6	Теплоемкость твердых тел. Теплоемкость двухатомного и трехатосного идеального газа	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
15	6	Квантовая статистика систем одинаковых частиц. Статистика Бозе-Эйнштейна и Фермы –и их приложение для конкретных задач	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами
16	6	Основные положения классической статистической теории неравновесных процессов	Письменное упражнений ИДЗ	решение и задач.	Поощрение баллами

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Основная литература

- 1. Ефремов, Ю. С. Статистическая физика и термодинамика : учебное пособие для академического бакалавриата / Ю. С. Ефремов. 2-е изд., испр. и доп. Москва : Издательство Юрайт, 2021. 209 с.
- 2. Бондарев, в 3 кн. Книга 3: Термодинамика, статистическая физика, строение вещества [электронный ресурс]: учебник для бакалавров / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. 2-е изд. Москва : Издательство Юрайт, 2021. 369 с.

5.2. Дополнительная литература

- 1. Ансельм, А. И. Основы статистической физики и термодинамики [Электронный ресурс] : учеб. пособие для вузов / А. И. Ансельм. 2-е изд., стер. СПб. : Лань, 2007. 448 с.
- 2. Ландау Л.Д., Лившиц Е.М. Теоретическая физика. Т. 5, Ч. 1, Статистическая физика: учебное пособие. М., Физматлит, 2003, 2005.
- 3. Леонтович М.А. Введение в термодинамику. Статистическая физика. М., Лань, 2008.
- 4. Терлецкий Я.П. Статистическая физика. М., Высшая школа, 1973.
- 5. Румер Ю.Б., Рывкин М.Ш. Термодинамика, статистическая физика и кинетика. М.,Наука, 2001.-608 С.
- 6. Задачи по термодинамике и статистической физике. Под ред. Ландсберга П. М., Мир, 1974.-340 С.

5.3 Нормативно-правовые материалы (по мере необходимости)

5.4. Перечень ресурсов информационно-телекоммуникационной сети Интернет:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com
- 5. http://phys.csu.ru/load.php?p=42
- 6. http://eqworld.ipmnet.ru/ru/library/physics/statphys.htm

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

6.1 Методические указания по организации самостоятельной работы обучающихся и методические рекомендации по их выполнению.

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой -1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету – 5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по общей физики и теоретической физики.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные темы домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

При выполнении домашних заданий необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Учебно-методический комплекс (УМК) призван помочь студенту понять специфику изучаемого материала, а в конечном итоге — максимально полно и качественно его освоить.

В первую очередь студент должен осознать предназначение комплекса: его структуру, цели и задачи. Для этого он знакомится с преамбулой, оглавлением УМК, говоря иначе, осуществляет первичное знакомство с ним.

Далее студент внимательно прочитывает и осмысливает тот раздел, задания которого ему необходимо выполнить.

Выполнение всех заданий, определяемых содержанием курса, предполагает работу с научными исследованиями (монографиями и статьями). Перед работой с научными источниками студенту следует обратиться к основной учебной литературе — учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам — справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их материалов позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение контрольной работы и т.д.).

6.2 Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета.. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Ф.И.О. студента, направление, курс и группа.

Методические указания к выполнению реферата:

- Тема реферата;
- Цель реферата: привить обучающимся навыки самостоятельного исследования той или иной проблемы естествознания.
- Исходные требования. Выбор темы реферата определяется обучающимися самостоятельно в соответствии с «Перечнем тем рефератов» и утверждается преподавателем профессионального модуля.

Перечень тем реферата периодически обновляется и дополняется.

Обучающиеся вправе самостоятельно выбрать любую тему реферата.

При написании доклада по заданной теме следует составить план, подобрать основные источники. Работая с источниками, следует систематизировать полученные сведения, сделать выводы и обобщения. К докладу по крупной теме привлекается несколько студентов, между которыми распределяются темы для выступления. В учебных заведениях доклады содержательно практически ничем не отличаются от рефератов и являются зачётной работой.

Реферат – краткое изложение в письменном виде или в форме публичного доклада содержания научного труда или трудов, обзор литературы по теме. Это самостоятельная научно-исследовательская работа студента, в которой раскрывается суть исследуемой проблемы. Изложение материала носит проблемно-тематический характер, показываются различные точки зрения, а также собственные взгляды автора на проблему.

Содержание реферата должно быть логичным. Объём реферата, как правило, от 5 до 10 страниц от руки. Темы реферата разрабатывает преподаватель, ведущий данную дисциплину. Перед началом работы над рефератом следует наметить план и подобрать литературу. Прежде всего, следует пользоваться литературой, рекомендованной учебной программой, а затем расширить список источников, включая и использование специальных журналов, где имеется новейшая научная информация.

Структура реферата:

- Титульный лист.
- Оглавление.
- Введение (дается постановка вопроса, объясняется выбор темы, её значимость и актуальность, указываются цель и задачи реферата, даётся характеристика используемой литературы).

6.3. Критерии оценки выполнения самостоятельной работы

по дисциплине «Статистическая физика»

Критериями для оценки самостоятельной работы могут служить:

- точность ответа на поставленный вопрос;
- формулировка целей и задач работы;
- раскрытие (определение) рассматриваемого понятия (определения, проблемы, термина);
- четкость структуры работы;
- самостоятельность, логичность изложения;
- наличие выводов, сделанных самостоятельно.

_

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

При проведении занятий по дисциплине «Статистическая физика» используются как классические формы и методы обучения (лекции, практические занятия), так и активные методы обучения (контрольно-обучающие программы тестирования по всем разделам изучаемого материала, работа при подготовке к занятиям, контрольным работам и рейтингового контроля.). Применение любой формы обучения предполагает также использование новейших ІТ-обучающих технологий. При проведении лекционных занятий по дисциплине «Статистическая физика» целесообразно использовать мультимедийное презентационное оборудование, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Преподаватель использует компьютерные и мультимедийные средства обучения (презентации), мультимедиа лекции, а также наглядно-иллюстрационные (в том числе раздаточные) материалы.

8.ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации: экзамен 8 семестре.

Форма промежуточной аттестации: 1 и 2 рубежный контроль проводится в виде контрольной работы.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов Таблица 6

	c henosibsobumien oykbennbik envibosiob i doshiqe					
Оценка по	, ,		Оценка по традиционной			
буквенной	соответствующих	выражение	системе			
системе	наборных баллов	оценочного балла				
A	10	95-100	Отлично			
A-	9	90-94	Отлично			
B +	8	85-89				
В	7	80-84	Хорошо			
В-	6	75-79				
C +	5	70-74				
C	4	65-69				
C-	3	60-64	Удовлетворительно			
D+	2	55-59				

D	1	50-54	
Fx	0	45-49	Harran
F	0	0-44	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО. ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.