МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН

МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

Естественнонаучный факультет

Кафедра математики и физики

«УТВЕРЖДАЮ»	
«»	20 г.
Зав кафеллой	Гулбоев Б Лж

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

Дополнительные главы математического анализа 01.03.01— Математика

профиль подготовки «Общая математика»

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине Дополнительные главы математического анализа

No	Контролируемые	Формируемы	Оценочные средства		
Π/Π	разделы, темы	e	Кол-во заданий	Другие оценочные	
	F,	компетенции	для	средства	
			экзамена/зачета	Вид	Кол-во
1	Преобразование	ПК-4	8	Выступление	2
	Лапласа. Оригинал и	ПК-5		Коллоквиум	2
	изображение	ПК-6		Дискуссия	2 2
2	Изображение	ПК-4	8	Выступление	2
	некоторых функций	ПК-5		Коллоквиум	2
		ПК-6		Дискуссия	2 2 2
3	Дифференцирование	ПК-4	8	Выступление	
	оригинала.	ПК-5		Коллоквиум	2 2
	Дифференцирование	ПК-6		Дискуссия	2
	изображения				
4	Вычисление	ПК-4	8	Выступление	2
	интегралов с	ПК-5		Коллоквиум	2 2
	помощью	ПК-6		Дискуссия	2
	операционного				
	исчисления				
5	Липеные	ПК-4	8	Выступление	2
	дифференциальные	ПК-5		Коллоквиум	2 2 2
	уравнения с	ПК-6		Дискуссия	2
	постоянными				
	коэффициентами				
6	Решения	ПК-4	8	Выступление	2
	интегральных	ПК-5		Коллоквиум	2
	уравнений	ПК-6		Дискуссия	2
	операционным				
	методом				
7	Применение	ПК-4	9	Выступление	2
	преобразования	ПК-5		Коллоквиум	2 2
	Лапласа	ПК-6		Дискуссия	
8	Применения	ПК-4	9	Выступление	2 2 2
	интегральных	ПК-5		Коллоквиум	2
	преобразований к	ПК-6		Дискуссия	2
	решению уравнения в				
	частных производных				
	Всего:		66		54

ТЕМЫ ВЫСТУПЛЕНИЯ ДЛЯ СТУДЕНТОВ Формируемые компетенции

- **ПК-4** Способен формировать способность к логическому рассуждению, убеждению, математическому доказательству и подтверждению его правильности
- ПК-5 Способен организовать исследования в области математики
- **ПК-6** Способен выявлять у обучающихся умения пользоваться заданной математической моделью

Выступление – речь, лекция, доклад, заявление и т.п., которые сообщаются кем-либо в устной форме.

Выступление студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.
- 1. Числовые последовательности. Ограниченные и неограниченные множества. Верхние и нижние грани множества.
- 2. Бесконечно малые и бесконечно большие последовательности.
- 3. Свойства бесконечно малых последовательностей.
- 4. Теорема связи между бесконечно большими и бесконечно малыми последовательностями.
- 5. Предел числовой последовательности Теорема о единственности предела. Критерии Коши.
- 6. Сходящиеся числовые последовательности.
- 7. Теорема об ограниченности сходящейся числовой последовательности. Свойства сходящихся числовых последовательностей.
- 8. Теорема о предельном переходе в неравенствах. Теоремы о промежуточной последовательности.
- 9. Монотонные последовательности. Теорема о сходимости монотонной ограниченной последовательности.
- 10. Теорема о вложенных отрезках.
- 11. Число Эйлера (е).
- 12. Понятие функции, способы ее задания. Классификация функций.
- 13. Два определения предела функции в точке. Теорема об эквивалентности определений пределов функции в точке.
- 14. Теорема о пределе суммы, произведения, и частной функции. Предел функции на бесконечности. Теорема об ограниченности функции, имеющей предел.

- 15. Односторонние пределы. Теоремы о переходе к пределу в неравенствах.
- 16. Теоремы о 2-м замечательном пределе.

Требование к выступлению:

- точность ответа на поставленный вопрос;
- формулировка целей и задач работы;
- раскрытие (определение) рассматриваемого понятия (определения, проблемы, термина);
- четкость структуры работы;
- самостоятельность, логичность изложения;
- наличие выводов, сделанных самостоятельно.

Критерии оценки по выступлению:

Отметка «5». Выступление выполнено в полном объеме с соблюдением необходимой последовательности. Работа соответствует требованию.

Отметка «**4**». Выступление отвечает предъявленным требованиям. Допускаются отклонения от необходимой последовательности выполнения, не влияющие на правильность конечного результата.

Отметка «3». Учащиеся показывают знания не в полной мере и испытывают затруднение при решении задач.

Отметка «2» выставляется в том случае, когда учащиеся не подготовлены к выполнению этой работы.

ЗАДАНИЯ ДЛЯ КОЛЛОКВИУМА Формируемые компетенции

ПК-4 — Способен формировать способность к логическому рассуждению, убеждению, математическому доказательству и подтверждению его правильности

ПК-5 – Способен организовать исследования в области математики

ПК-6 — Способен выявлять у обучающихся умения пользоваться заданной математической моделью

Коллоквиум — форма учебного занятия, понимаемая как беседа преподавателя с учащимися с целью активизации знаний.

Коллоквиум представляет собой мини-экзамен, проводимый с целью проверки и оценки знаний студентов после изучения большой темы или раздела в форме опроса или опроса с билетами.

Коллоквиум может проводиться в устной или письменной форме.

- 1. Найти неопределенный интеграл: $\int \frac{dx}{\cos^2 x \cdot \sin^2 x}.$
- 2. Вычислить площадь фигуры, ограниченной графиками функций:

$$y = (x-2)^3$$
, $y = 4x-8$.

- 3. $y = 4 x^2$, $y = x^2 2x$.
- 4. Вычислить площадь фигуры, ограниченной графиками функций:

$$y = \sqrt{1 - x^2}$$
, $y = 0$, $x = 0$, $x = 1$.

- 5. Вычислить несобственный интеграл или установить го сходимость (расходимость): $\int_0^\infty \frac{x+2}{x^2+4x+8} \, dx \, .$
- 6. Вычислить несобственный интеграл или установить его сходимость $\ln\left(1+3x^2\right)$ (расходимость): $\int_0^1 \frac{1}{x^3} dx$.
- 7. Вычислить определенный интеграл: $\int_{0}^{5} \frac{dx}{(25+x^{2})^{32}}.$
- 8. Вычислить площадь фигуры, ограниченной линиями: $\begin{cases} |x = 16\cos^3 t \\ |y = \sin^3 t \end{cases}$ $x = 6\sqrt{3} \quad (x \ge 6\sqrt{3})$
- 9. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах: $r = \cos 2\phi$.
- 10. Вычислить площадь фигуры, ограниченной линиями, заданными в полярных координатах: $r = 6\sin 3\varphi$, r = 3 ($r \ge 3$).
- 11. Вычислить длину дуги кривой, заданной параметрически:

$$\begin{cases} x = 3(2\cos t - \cos 2t) \\ y = 3(2\sin t - \sin 2t) \\ 0 \le t \le \pi \end{cases}$$

- 12. Вычислить объем тела, образованного вращением фигуры ограниченной графиком данной функции, вокруг оси Ox: $y = 3\sin x$, $y = \sin x$, $0 \le x \le \pi$.
- 13. Вычислить объем тела, образованного вращением фигуры ограниченной графиком данной функции, вокруг оси Oy: $y = 5\cos x$, $y = \cos x$, x = 0, $x \ge 0$.
- 14. Найти предел или показать, что он не существует: $\lim_{x\to 0,\ y\to 0} \frac{x^2-y^2}{x^2+y^2}$
- 15. Найти предел или показать, что он не существует: $\lim_{x\to 0,\ y\to 0} \left(x^2+y^2\right)^{x^2y^2}$ Найти первые частные производные функции $F=y^{2y+x}$

Критерии оценки коллоквиума:

Оценка «5» - глубокое и прочное усвоение материала. Умение доказать свое решение. Демонстрация обучающимся знаний в объеме пройденной программы. Воспроизведение учебного материала с требуемой степенью точности.

Оценка «4» - наличие несущественных ошибок, уверенно исправляемых обучающимся после дополнительных и наводящих вопросов.

Демонстрация обучающимся знаний в объеме пройденной программы. Четкое изложение учебного материала.

Оценка «3» - наличие несущественных ошибок в ответе, не исправляемых обучающимся. Демонстрация обучающимся недостаточно полных знаний по пройденной программе.

Оценка «2» - не знание материала пройденной темы. При ответе возникают серьезные ошибки.

ЗАДАНИЯ ДЛЯ ДИСКУССИИ

Формируемые компетенции

ПК-4 — Способен формировать способность к логическому рассуждению, убеждению, математическому доказательству и подтверждению его правильности

ПК-5 – Способен организовать исследования в области математики

ПК-6 — Способен выявлять у обучающихся умения пользоваться заданной математической моделью

Дискуссия — обсуждение спорного вопроса, проблемы; разновидность спора, направленного на достижение истины и использующего только корректные приёмы ведения спора.

- 1. Определение предела функции в точке. Основные теоремы о пределах (одну из них доказать).
- 2. Бесконечно малые величины (определение). Свойства бесконечно малых (одно из них доказать). Бесконечно большие величины, их связь с бесконечно малыми. Второй замечательный предел, число е. Понятие о натуральных логарифмах.
- 3. Непрерывность функции в точке и на промежутке. Свойства функций, непрерывных на отрезке. Точки разрыва. Примеры.
- 4. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке.
- 5. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему).
- 6. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
- 7. Формулы производных основных элементарных функций (одну из формул вывести). Производная сложной функции.
- 8. Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.
- 9. Достаточные признаки монотонности функции (один из них доказать).
- 10. Определение экстремума функции одной переменной. Необходимый признак экстремума (доказать).
- 11. Достаточные признаки существования экстремума (доказать одну из теорем).
- 12. Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры. Общая схема исследования функций и построения их графиков. Пример.

- 13. Функции нескольких переменных. Примеры. Частные производные (определение). Экстремум функции нескольких переменных и его необходимые условия.
- 14. Понятие об эмпирических формулах и методе наименьших квадратов. Подбор параметров линейной функции (вывод системы нормальных уравнений).
- 15. Дифференциал функции и его геометрический смысл. Инвариантность формы дифференциала 1-го порядка. Понятие о дифференциальных уравнениях. Общее и частное решения.
- 16. Понятие первообразной функции. Неопределенный интеграл и его свойства (одно из свойств доказать).

Критерии оценки дискуссии:

- 1. Оценка «отлично» выставляется студенту, если он активно принимал участие в дискуссии и отвечал на вопросы полным ответом с доказательством и решением безошибочно.
- 2. Оценка «хорошо» выставляется студенту, если он активно учувствовал в дискуссии, но у него были несущественные ошибки, которые он потом исправлял.
- 3. Оценка «удовлетворительно» выставляется студенту, если он не учувствовал в дискуссии добровольно, а при вызывании к доске отвечал не в полной мере.
- 4. Оценка «неудовлетворительно» выставляется студенту, если он не учувствовал в дискуссии, а при вызывании к доске не мог ничего ответить.

ЗАДАНИЯ ИТОГОВОГО КОНТРОЛЯ ПО ДИСЦИПЛИНЕ ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (ЗАЧЕТ)

ПК-4 — Способен формировать способность к логическому рассуждению, убеждению, математическому доказательству и подтверждению его правильности

ПК-5 – Способен организовать исследования в области математики

ПК-6 — Способен выявлять у обучающихся умения пользоваться заданной математической моделью

1. Вычислить интеграл:
$$\iint_G (x^2 + y^2) dG$$
, $G = \{(x, y): 1 \le x \le 3, 2 \le y \le 4\}$

2. Найти площадь фигуры, ограниченной данными линиями:

$$x = \sqrt{36 - y^2}, \quad x = 6 - \sqrt{36 - y^2}$$

3. Найти площадь фигуры, ограниченной данными линиями:

$$x = \sqrt{36 - y^2}$$
, $x = 6 - \sqrt{36 - y^2}$

4. Найти объем тела заданного ограничивающими его поверхностями. $y = 16\sqrt{2x}$; $y = \sqrt{2x}$; z = 0; x + z = 2

- 5. Вычислить интеграл по данной кривой γ от точки A до точки B $\int_{\gamma} (x^2 y) dx + (y + x) dy \qquad \gamma : y^2 = 2x; \quad A(0, 0); \quad B(2, 2)$
- 6. Вычислить интеграл по данной кривой γ от точки A до точки B $\int_{\gamma} (2x+3y)dx + (y+x^2)dy \qquad \gamma : 2x^2 = 1; \quad A(0,-1); \quad B(1,1)$
- 7. Найти работу силы \vec{F} при перемещении вдоль линий L от точки M к точке N . $\vec{F} = (x^2 + 2y)_{\vec{i}} + (y^2 + 2x)_{\vec{j}}$ L: отрезок MN: M(-4; 0), N(0, 2)
- 8. Найти работу силы \vec{F} при перемещении вдоль линий L от точки M к точке N_2 $\vec{F} = (x^2 + 2y)\vec{i} + (y^2 + 2x)\vec{j}$ = (-) (
- 9. Найти циркуляцию векторного поля a вдоль кривой Γ (в направлении, соответствующим возрастанию параметра t) $\vec{a} = y\vec{i} x\vec{j} + z^2k$, $\Gamma: x = \frac{\sqrt{2}}{2}\cos t, \ \ y = \frac{\sqrt{2}}{2}\cos t, \ \ z = \sin t$
- 10. Найти циркуляцию векторного поля a вдоль кривой Γ (в направлении, соответствующим возрастанию параметра t) $\vec{a} = -x^2 y^2 \vec{i} + \vec{j} + z k$, $\Gamma: x = \sqrt[3]{4} \cos t$, $y = \sqrt[3]{4} \sin t$, z = 3
- 11. Найти поверхностный интеграл первого рода $\iint z(x+y)dS, \quad S-\text{верхняя половина сферы } x^2+y^2+z^2=4$
- 12. Найти поверхностный интеграл первого рода $\iint_S \sqrt{1+x^2+y^2} \ dS, \quad S-\text{часть поверхности } z=1-\frac{x^2}{2}-\frac{y^2}{2}, \quad \text{отсеченная}$ поверхностью z=0
- 13. Доказать сходимость ряда и найти его сумму $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$
- 14. Доказать сходимость ряда и найти его сумму $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{12^n}$
- 15. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^{3n}}{8^n}$
- 16. Найти область сходимости ряда $\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 2^n}$
- 17. Найти общее решение дифференциального уравнения y' 6y' + 9y = 0.

- 18. Найти общее решение дифференциального уравнения y' 8y' + 16y = 0.
- 19. Числовые последовательности. Ограниченные и неограниченные множества. Верхние и нижние грани множества.
- 20. Бесконечно малые и бесконечно большие последовательности.
- 21. Свойства бесконечно малых последовательностей.
- 22. Теорема связи между бесконечно большими и бесконечно малыми последовательностями.
- 23. Предел числовой последовательности Теорема о единственности предела. Критерии Коши.
- 24. Сходящиеся числовые последовательности.
- 25. Теорема об ограниченности сходящейся числовой последовательности. Свойства сходящихся числовых последовательностей.
- 26. Теорема о предельном переходе в неравенствах. Теоремы о промежуточной последовательности.
- 27. Монотонные последовательности. Теорема о сходимости монотонной ограниченной последовательности.
- 28. Теорема о вложенных отрезках.
- 29. Число Эйлера (е).
- 30. Понятие функции, способы ее задания. Классификация функций.
- 31. Два определения предела функции в точке. Теорема об эквивалентности определений пределов функции в точке.
- 32. Теорема о пределе суммы, произведения, и частной функции. Предел функции на бесконечности. Теорема об ограниченности функции, имеющей предел.
- 33. Односторонние пределы. Теоремы о переходе к пределу в неравенствах.
- 34. Теоремы о 2-м замечательном пределе.
- 35. Бесконечно малые и бесконечно большие функции, сравнение бесконечно малых функций, эквивалентные бесконечно малые. Связь между бесконечно большими и бесконечно малыми
- 36. Непрерывность функции в точке. Примеры. Свойства непрерывных в точке функций. Теорема о непрерывности сложной функции.
- 37. Теорема о непрерывности обратной функции. Критерий непрерывности функции в точке.
- 38. Односторонняя непрерывность.
- 39. Бесконечные пределы функции. Понятие непрерывности функции. Дифференциальное счисление. Производная функции.
- 40. Теоремы о дифференцируемых функциях.
- 41. Приложение производной к исследованию функций. Асимптоты графика функции.
- 42. Правило Лопиталя. Дифференциал функции.
- 43. Определение предела функции в точке. Основные теоремы о пределах (одну из них доказать).
- 44. Бесконечно малые величины (определение). Свойства бесконечно малых (одно из них доказать). Бесконечно большие величины, их связь

- с бесконечно малыми. Второй замечательный предел, число е. Понятие о натуральных логарифмах.
- 45. Непрерывность функции в точке и на промежутке. Свойства функций, непрерывных на отрезке. Точки разрыва. Примеры.
- 46. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке.
- 47. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему).
- 48. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
- 49. Формулы производных основных элементарных функций (одну из формул вывести). Производная сложной функции.
- 50. Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.

Критерии оценки заданий

«отлично» - более 90 баллов;
«хорошо» - более 75 баллов;
«удовлетворительно» - менее 70 баллов;
«неудовлетворительно» - менее 50 баллов.

Разработчик: д.ф.-м.н., профессор Курбанов И.К.

« » ______2025.