МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ

«УТВЕРЖДАЮ»

«**23** » авгуето, 20**25** г.

Зав. кафедрой Деет Гулбоев Б.Дж.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по учебной дисциплине

«Теоретическая механика» Направление подготовки - 01.03.01 «Математика» Форма подготовки - очная Уровень подготовки - бакалавриат

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Теоретическая механика»

	., ,	Coperin		Оценочные средства	
$N_{\underline{o}}$	Контролируемые разделы, темы,	Формируемые	Кол-во	Другие оценочные средо	ства
п/п	модули	компетенции	тестовых	D	Кол
	· •		заданий	Вид	-во
1.	Введение. Способы задания	ОПК-2		Перечень вопросов для	1
	движения точки	ПК-2	12	коллоквиума,	
		ПК-5		разноуровнивые задачи	4
	Скорость точки	ОПК-2		Перечень вопросов для	1
2.	•	ПК-2	14	коллоквиума,	
		ПК-5		разноуровнивые задачи	4
3.	Ускорение точки. Частные	ОПК-2		Перечень вопросов для	1
	случаи движения точки	ПК-2	12	коллоквиума,	
		ПК-5		разноуровнивые задачи	4
	Поступательное движение			Перечень вопросов для	1
	твердого тела. Вращательное	ОПК-2		коллоквиума,	
4.	движение твердого тела. Угол	ПК-2	10	разноуровнивые задачи	
	поворота, угловая скорость,	ПК-5	10	pusitely permission sugar in	4
	угловое ускорение				
	Вращательное движение	ОПК-2		Перечень вопросов для	1
5.	твердого тела. Скорости и	ПК-2	12	коллоквиума,	4
	ускорения точек тела	ПК-5		разноуровнивые задачи	
	Плоскопараллельное движение			Перечень вопросов для	1
_	твердого тела. Скорость точек	ОПК-2	10	коллоквиума,	
6.	тела при плоскопараллельном	ПК-2	10	разноуровнивые задачи	4
	движении	ПК-5		F	
	Мгновенный центр скоростей.	ОПК-2		Перечень вопросов для	1
7.	Ускорение точек тела при	ПК-2	13	коллоквиума,	
	плоскопараллельном движении	ПК-5		разноуровнивые задачи	4
	Движение твердого тела вокруг	ОПК-2		Перечень вопросов для	1
8.	неподвижной точки. Общий	ПК-2	16	коллоквиума,	
	случай движения твердого тела	ПК-5		разноуровнивые задачи	4
	Сложное движение точки	ОПК-2	10	Перечень вопросов для	1
9.		ПК-2		коллоквиума,	
		ПК-5		разноуровнивые задачи	4
10.	Предмет кинетики. Основные	ОПК-2		Перечень вопросов для	1
	понятия. Законы механики	ПК-2	10	коллоквиума,	
	Галилея-Ньютона	ПК-5		разноуровнивые задачи	4
11.	Связи и реакции связей.	ОПК-2		Перечень вопросов для	1
	Классификация связей	ПК-2	12	коллоквиума,	
	<u>-</u>	ПК-5		разноуровнивые задачи	4
12.	Дифференциальные уравнения	ОПК-2		Перечень вопросов для	1
	движения материальной точки.	ПК-2	10	коллоквиума,	
	Две задачи динамики	ПК-5		разноуровнивые задачи	4
13.	Свободные колебания точки без	ОПК-2		Перечень вопросов для	2
	учета сопротивления среды	ПК-2	10	коллоквиума,	
	<u> </u>	ПК-5		разноуровнивые задачи	4
14.	Свободные затухающие	ОПК-2	13	Перечень вопросов для	1
	колебания точки. Вынужденные	ПК-2		коллоквиума,	
		ПК-5			

	колебания точки при гармонической возмущающей силе и сопротивлении, пропорциональном скорости. Резонанс			разноуровнивые задачи	4
15.	Дифференциальные уравнения движения механической системы. Силы, действующие на абсолютно твердое тело	ОПК-2 ПК-2 ПК-5	13	Перечень вопросов для коллоквиума, разноуровнивые задачи	1 4
16.	Распределенные силы. Центр тяжести. Момент силы относительно точки и относительно оси	ОПК-2 ПК-2 ПК-5	8	Перечень вопросов для коллоквиума, разноуровнивые задачи	3
17.	Пара сил. Условие эквивалентности пар сил. Сложение пар. Главный вектор и главный момент системы сил. Свойства внутренних сил. Приведение системы сил к данному центру	ОПК-2 ПК-2 ПК-5	7	Перечень вопросов для коллоквиума, разноуровнивые задачи	3
18.	Масса и центр масс системы материальных точек. Момент инерции простейших однородных тел	ОПК-2 ПК-2 ПК-5	10	Перечень вопросов для коллоквиума, разноуровнивые задачи	2 3
19.	Теоремы об изменении	ОПК-2 ПК-2 ПК-5	10	Перечень вопросов для коллоквиума, разноуровнивые задачи	1 4
20.	Теорема об изменении кинетического момента	ОПК-2 ПК-2 ПК-5	7	Перечень вопросов для коллоквиума, разноуровнивые задачи	1 4
21.	Теоремы об изменении кинетической энергии	ОПК-2 ПК-2 ПК-5	8	Перечень вопросов для коллоквиума, разноуровнивые задачи	1 4
22.	Условия равновесия систем сходящихся и параллельных сил. Условия равновесия плоской системы сил	ОПК-2 ПК-2 ПК-5	6	Перечень вопросов для коллоквиума, разноуровнивые задачи	3
23.	Принцип Даламбера	ОПК-2 ПК-2 ПК-5	7	Перечень вопросов для коллоквиума, разноуровнивые задачи	3
	Всего:		240		113

МОУ ВО «РОССИЙСКО-ТАДЖИКСКИЙ» (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ КОЛЛОКВИУМА

по дисциплине (модулю) «Теоретическая механика»

Формируемые компетенции

ОПК-2-Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные

- **ОПК-2** Способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта
- **ПК-4** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами

Коллоквиум – форма учебного занятия, понимаемая как беседа преподавателя с учащимися с целью активизации знаний.

Коллоквиум представляет собой мини-экзамен, проводимый с целью проверки и оценки знаний студентов после изучения большой темы или раздела в форме опроса или опроса с билетами.

- 1. Траектория точки
- 2. Определение скорости и ускорение точки, если закон её движения задан в координатной форме
- 3. Определение скорости и ускорение точки при естественном способе задания движения
- 4. Равномерное и равнопеременное движения точки
- 5. Определение угла поворота, угловой скорости и углового ускорения твердого тела при её вращательном движении
- 6. Определение линейных скоростей и ускорения точек твердого тела при её вращательном движении
- 7. Определение скоростей точек тела при плоскопараллельном движении
- 8. Определение скоростей точек тела с помощью мгновенного центра скоростей
- 9. Определение ускорения точек тела при плоскопараллельном движении
- 10. Определение скорости точки при сложном движении
- 11. Определение ускорения точки при сложном движении
- 12. Первая задача динамики
- 13. Вторая задача динамики: определение параметров прямолинейного движения по заданным силам
- 14. Вторая задача динамики: Определение параметров криволинейного движения по заданным силам
- 15. Относительное движение точки
- 16. Определение параметров свободного колебательного движения
- 17. Определение параметров затухающих и вынужденных колебаний
- 18. Определение моментов инерции простейших однородных тел
- 19. Решение задач по теореме о движении центра масс. Импульс силы. Количество движения
- 20. Решение задач по теореме об изменении количества движения
- 21. Кинетический момент точки и системы материальных точек
- 22. Решение задач по теореме об изменении кинетического момента
- 23. Работа и мощность силы. Кинетическая энергия
- 24. Решение задач по теореме об изменении кинетической энергии

- 25. Сложение и разложение сходящихся сил в плоскости. Равновесие плоской системы сходящихся сил
- 26. Метод кинетостатики для материальной точки

Критерии оценки:

- оценка «отлично» выставляется студенту, если:
- 1) полно и аргументированно отвечает по содержанию задания;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно.
- оценка «**хорошо**», если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.
- оценка «удовлетворительно», если студент обнаруживает знание и понимание основных положений данного задания, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил; 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; 3) излагает материал непоследовательно и допускает ошибки.
- оценка «неудовлетворительно», если
- студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.
- оценка «зачтено» выставляется студенту, если

Полное верное решение. В логическом рассуждении и решении нет ошибок, задача решена рациональным способом. Получен правильный ответ. Ясно описан способ решения.

Решение неверное или	и отсутству	veт
Составитель		Б.Дж. Гулбоев
(подпись)		
(,	«	» августа 2024г.

МОУ ВО «РОССИЙСКО-ТАДЖИКСКИЙ» (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ РАЗНОУРОВНЕВЫЕ ЗАДАЧИ

по дисциплине «Теоретическая механика»

Формируемые компетенции

ОПК-2-Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные ПК-2 - Способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического оборудования) и информационных технологий с учетом отечественного и зарубежного опыта

- **ПК-4** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами
 - 1. Заданы уравнения движения точки $x = 1 + 2\sin 0.1t$, y = 3t. Определите координату x точки в момент времени, когда её координата y = 12 м.
 - 2. Заданы уравнения движения точки $x = t^2 + 2$, y = 3t. Определить расстояние точки от начала координат в момент времени t = 2c.
 - 3. Заданы уравнения движения точки x = 2t, y = 2t. Определить время t, когда расстояние от точки до начала координат достигнет 14 м.
 - 4. Заданы уравнения движения точки $x = 1 2\cos 0.6t$, y = 4t. Определить ближайший момент времени, когда точка пересечет ось Oy.
 - 5. Дано уравнение движение точки $\bar{r} = t^2 \bar{i} + 2t \ \bar{j} + 3k \ .$ Определить модуль скорости точки в момент времени t = 2c.
 - 6. Дано уравнение движение точки $\bar{r} = 4\bar{t} + 6t\bar{j} 4t^3\bar{k}$. Определить модуль скорости точки в момент времени t = 1с.
 - 7. Даны уравнения движения точки $x = t^3$, $y = \sin \pi t / 2$, $z = \cos \pi t / 2$. Определить модуль скорости точки в момент времени t = 1с.
 - 8. Даны уравнения движения точки $x = 2t^2$, $y = 4\sin\pi t/2$, $z = 2\cos\pi t/2$. Определить модуль скорости точки в момент времени t = 1c.
 - 9. Скорость автомобиля равномерно увеличивается в течение 12 с от нуля до 60 км/ч. Определить ускорение автомобиля.
 - 10. Скорость автомобиля равномерно увеличивается в течение 15 с от нуля до 40 км/ч. Определить ускорение автомобиля.
 - 11. Точка движется по прямой с ускорением $w = 0.5 \text{ м/c}^2$. Определите, за какое время будет пройдено расстояние 9 м, если при $t_0 = 0$ скорость $v_0 = 0$.
 - 12. Точка движется по прямой с ускорением $w = 0.6 \,\mathrm{m/c^2}$. Определите, за какое время будет пройдено расстояние 12 м, если при $t_0 = 0$ скорость $v_0 = 0$.

- 13. Ускорение точки $\overline{w} = 0.5t\overline{i} + 0.2t^2\overline{j}$. Определить модуль ускорения в момент времени t = 2c.
- 14. Ускорение точки $\overline{w} = 0.6t\overline{t} + 0.4t^2\overline{j}$. Определить модуль ускорения в момент времени t = 2c.
- 15. Ускорение точки $\overline{w} = 4ti + 2t^2 j$. Определить модуль ускорения в момент времени t = 2c.
- 16. Ускорение точки $\overline{w} = 4t^2 \overline{i} + 5t \overline{j}$. Определить модуль ускорения в момент времени t = 1с. прямоугольников с левыми ординатами при n = 4 (при вычислении округление производить до четырех цифр после десятичной запятой).
- 17. Скорость точки $\theta = 0.9t\bar{i} + t^2\bar{j}$. Определить модуль ускорения точки в момент времени t = 1.5 с. прямоугольников с левыми ординатами при n = 4 (при вычислении округление производить до четырех цифр после десятичной запятой).
- 18. Скорость точки $\psi = 2t\bar{t} + 3t^2\bar{f}$. Определить модуль ускорения точки в момент времени t = 1с.
- 19. Автомобиль движется по горизонтальной дороге с постоянной скоростью $\upsilon = 90\,\mathrm{km/v}$. Определить радиус закругления дороги в момент времени, когда нормальное ускорение центра автомобиля $w_n = 2.5\mathrm{m/c}^2$.
- 20. Автомобиль движется по горизонтальной дороге с постоянной скоростью $\upsilon = 85$ км/ч. Определить радиус закругления дороги в момент времени, когда нормальное ускорение центра автомобиля $w_n = 2.5$ м/с².
- 21. Дано уравнения движения точки по траектории s = 5t м. Определить радиус кривизны траектории, когда нормальное ускорение точки $w_n = 3$ м/с².
- 22. Дано уравнения движения точки по траектории s = 6t + 1 м. Определить радиус кривизны траектории, когда нормальное ускорение точки $w_n = 3$ м/с².
- 23. Электровоз движется по дуге окружности радиуса R = 300м. Определить максимальную скорость электровоза в км/ч, при которой нормальное ускорение не превышало бы 1 м/c^2 .
- 24. Электровоз движется по дуге окружности радиуса R = 500м. Определить максимальную скорость электровоза в км/ч, при которой нормальное ускорение не превышало бы 1 м/c^2 .
- 25. Даны нормальное $w_n = 2.5 \text{ m/c}^2$ и касательное $w_{\tau} = 1.5 \text{ m/c}^2$ ускорения точки. Определить полное ускорение точки.
- 26. Даны нормальное $w_n = 3.5 \,\mathrm{m/c^2}$ и касательное $w_\tau = 2.5 \,\mathrm{m/c^2}$ ускорения точки. Определить полное ускорение точки.
- 27. Точка движется по криволинейной траектории с касательным ускорением $w_{\tau} = 1.4 \text{ м/c}^2$. Определить нормальное ускорение точки в момент времени, когда ее полное ускорение $w = 2.6 \text{ м/c}^2$.

- 28. Точка движется по криволинейной траектории с касательным ускорением $w_{\tau} = 2.5 \text{ м/c}^2$. Определить нормальное ускорение точки в момент времени, когда ее полное ускорение $w = 3.7 \text{ м/c}^2$.
- 29. Задано уравнение движение точки по криволинейной траектории: $s = 0.2t^2 + 0.3t$ м. Определить полное ускорение точки в момент времени t = 3c, если в этот момент радиус кривизны траектории $\rho = 1.5$ м.
- 30. Задано уравнение движение точки по криволинейной траектории: $s = 0.2t^2 + 0.3t$ м. Определить полное ускорение точки в момент времени t = 4 с, если в этот момент радиус кривизны траектории $\rho = 1.5$ м.
- 31. Угловая скорость тела изменяется согласно закону $\omega = -8t$. Определить угол поворота тела в момент времени t = 3c, если при $t_0 = 0$ угол поворота $\phi_0 = 5$ рад.
- 32. Угловая скорость тела изменяется согласно закону $\omega = 4t$. Определить угол поворота тела в момент времени t = 2c, если при $t_0 = 0$ угол поворота $\phi_0 = 5$ рад.
- 33. Ротор электродвигателя, начав вращаться равноускорено, сделал за первые 5с 100 оборотов. Определить угловое ускорение ротора.
- 34. Ротор электродвигателя, начав вращаться равноускорено, сделал за первые 7с 120 оборотов. Определить угловое ускорение ротора.
- 35. Тело вращается вокруг неподвижной оси согласно закону $\varphi = t^3 + 2$. Определить угловую скорость тела в момент времени, когда угол поворота $\varphi = 10$ рад.
- 36. Тело вращается вокруг неподвижной оси согласно закону $\varphi = t^2 + 2$. Определить угловую скорость тела в момент времени, когда угол поворота $\varphi = 6$ рад.
- 37. Тело вращается вокруг неподвижной оси согласно закону $\phi = 4 + 2t^3$. Определить угловое ускорение тела в момент времени, когда угловая скорость $\omega = 6$ рад/с.
- 38. Тело вращается вокруг неподвижной оси согласно закону $\phi = 2 + t^3$. Определить угловую ускорение тела в момент времени, когда угловая скорость $\omega = 3$ рад/с.
- 39. Тело вращается вокруг неподвижной оси согласно закону $\varphi = t^2$. Определить скорость точки тела на расстоянии r = 0.5 м от оси вращения в момент времени, когда угол поворота $\varphi = 25$ рад.
- 40. Тело вращается вокруг неподвижной оси согласно закону $\varphi = t^2 + 9$. Определить скорость точки тела на расстоянии r = 0,5 м от оси вращения в момент времени, когда угол поворота $\varphi = 25$ рад.
- 41. Тело вращается равнопеременно с угловым ускорением $\varepsilon = 5 \, \text{рад/c}^2$. Определить скорость точки на расстоянии $r = 0,2 \, \text{м}$ от оси вращения в момент времени $t = 2 \, \text{c}$, если при $t_0 = 0$ угловая скорость $\omega_0 = 0$.

- 42. Тело вращается равнопеременно с угловым ускорением $\varepsilon = 6 \, \text{рад/c}^2$. Определить скорость точки на расстоянии $r = 0,3 \, \text{м}$ от оси вращения в момент времени t = 3c, если при $t_0 = 0$ угловая скорость $\omega_0 = 0$.
- 43. Скорость точки тела на расстоянии r = 0,2 м от оси вращения изменяется по закону $\upsilon = 4t^2$. Определите угловую скорость данного тела в момент времени t = 2 с.
- 44. Скорость точки тела на расстоянии r = 0.4 м от оси вращения изменяется по закону $\upsilon = 5t^2$. Определите угловую скорость данного тела в момент времени t = 2 с.
- 45. Точка массой m = 6 кг движется по горизонтальной прямой с ускорением a = 0.5t + 1. Определить модуль силы, действующей на точку в направлении ее движения в момент времени t = 5 с.
- 46. Точка массой m = 7 кг движется по горизонтальной прямой с ускорением a = 4t + 2. Определить модуль силы, действующей на точку в направлении ее движения в момент времени t = 2 с.
- 47. Тело массой m = 60кг подвешенной на тросе, поднимается вертикально с ускорением $a = 0.5 \,\mathrm{m/c^2}$. Определить силу натяжения троса.
- 48. Тело массой m = 70кг подвешенной на тросе, поднимается вертикально с ускорением a = 0.6 м/с². Определить силу натяжения троса.
- 49. Определить модуль равнодействующей сил, действующих на материальную точку массой m = 3 кг в момент времени t = 6 с, если она движется по оси Ox согласно уравнению $x = 0.04t^3$.
- 50. Определить модуль равнодействующей сил, действующих на материальную точку массой $m = 4 \, \text{кг}$ в момент времени $t = 6 \, \text{c}$, если она движется по оси Ox согласно уравнению $x = 0.04t^3$.
- 51. Материальная точка массой 1,4 кг движется прямолинейно по закону $x = 6t^2 + 6t + 3$. Определить модуль равнодействующей сил, приложенных к точке.
- 52. Материальная точка массой 1,5 кг движется прямолинейно по закону $x = 3t^2 5t + 8$. Определить модуль равнодействующей сил, приложенных к точке.
- 53. Материальная точка массой m = 6 кг движется в горизонтальной плоскости Oxy с ускорением $\bar{a} = 3\bar{i} + 4\bar{j}$. Определить модуль силы, действующей на нее в плоскости движения.
- 54. Материальная точка массой m = 7 кг движется в горизонтальной плоскости Oxy с ускорением $\bar{a} = 3\bar{i} + 4\bar{j}$. Определить модуль силы, действующей на нее в плоскости движения.
- 55. Материальная точка массой $m = 13 \, \text{кг}$ движется в горизонтальной плоскости Oxy со скоростью $\Theta = 4t\bar{t} + 5t\bar{j}$. Определить модуль силы, действующей на нее в плоскости движения.
- 56. Материальная точка массой $m = 15 \, \text{кг}$ движется в горизонтальной плоскости Oxy со скоростью $\Theta = 2t\bar{i} + 3t\bar{j}$. Определить модуль силы, действующей на нее в плоскости движения.

- 57. Движение материальной точки массой m = 9 кг в плоскости Oxy определяется радиусом-вектором $\bar{r} = 0.6t^2\bar{i} + 0.5t^2\bar{j}$. Определить модуль равнодействующих всех сил, приложенных к точке.
- 58. Движение материальной точки массой m = 7 кг в плоскости Oxy определяется радиусом-вектором $\bar{r} = 0,1t^2\bar{i} + 0,2t^2\bar{j}$. Определить модуль равнодействующих всех сил, приложенных к точке.
- 59. Движение материальной точки массой m = 8 кг происходит в горизонтальной плоскости Oxy согласно уравнениям $x = 0.05t^3$ и $y = 0.3t^2$. Определить модуль равнодействующей приложенных к точке сил в момент времени t = 4 с.
- 60. Движение материальной точки массой m = 9 кг происходит в горизонтальной плоскости Oxy согласно уравнениям $x = 0.06t^3$ и $y = 0.4t^2$. Определить модуль равнодействующей приложенных к точке сил в момент времени t = 5 с.
- 61. Материальная точка массой m = 16 кг движется по окружности радиуса R = 9 м со скоростью $\upsilon = 0.8$ м/с. Определить проекцию равнодействующей сил, приложенных к точке, на главную нормаль к траектории.
- 62. Материальная точка массой m = 17 кг движется по окружности радиуса R = 10м со скоростью $\upsilon = 0.9$ м/с. Определить проекцию равнодействующей сил, приложенных к точке, на главную нормаль к траектории.
- 63. Материальная точка M массой 1,2 кг движется по окружности радиуса r = 0,6 м согласно уравнению s = 2,4t. Определить модуль равнодействующей сил, приложенных к материальной точке.
- 64. Материальная точка M массой 3,4 кг движется по окружности радиуса r = 0.8 м согласно уравнению s = 2.6t. Определить модуль равнодействующей сил, приложенных к материальной точке.
- 65. Точка массой m = 4кг движется по горизонтальной прямой с ускорением w = 0.5t. Определить модуль силы, действующую на точку в направлении ее движения в момент времени t = 3c.
- 66. Точка массой m = 5кг движется по горизонтальной прямой с ускорением w = 0,6t. Определить модуль силы, действующую на точку в направлении ее движения в момент времени t = 3c.
- 67. Точка массой m = 8кг движется по горизонтальной прямой с ускорением w = 0.9t. Определить модуль силы, действующую на точку в направлении ее движения в момент времени t = 6c.
- 68. Материальная точка массой m = 10кг движется по прямой со скоростью $\upsilon = 0.5t^2 + 2t$. Определить модуль равнодействующей сил, действующих на точку в момент времени t = 10c.

- 69. Материальная точка массой m = 12кг движется по прямой со скоростью $\upsilon = 4t^2 + 3t$. Определить модуль равнодействующей сил, действующих на точку в момент времени t = 6c.
- 70. Определить модуль равнодействующей сил, действующих на материальную точку массой m = 2кг в момент времени t = 2c, если она движется по оси Ox согласно уравнению $x = 2t^3$.
- 71. Определить модуль равнодействующей сил, действующих на материальную точку массой m = 2кг в момент времени t = 3c, если она движется по оси Ox согласно уравнению $x = 2t^3$.
- 72. Материальная точка массой m = 10кг движется в горизонтальной плоскости Oxy с ускорением w = 3i + 4j. Определить модуль силы, действующей на нее в плоскости движения.
- 73. Материальная точка массой m = 4кг движется в горизонтальной плоскости Oxy с ускорением w = 3i + 4j. Определить модуль силы, действующей на нее в плоскости движения.
- 74. Материальная точка массой m=9кг движется в пространстве под действием силы $\overline{F}=5\bar{i}+6\bar{j}+7\bar{k}$. Определить модуль ускорения точки.
- 75. Материальная точка массой m = 9кг движется в пространстве под действием силы $\overline{F} = 4\overline{i} + 3\overline{j} + 2\overline{k}$. Определить модуль ускорения точки.
- 76. Материальная точка массой m=900кг движется по горизонтальной прямой под действием силы F=270t. Определить скорость точки в момент времени t=10c, если при $t_{\scriptscriptstyle 0}=0$ скорость $\upsilon_{\scriptscriptstyle 0}=10\, m/c$.
- 77. Материальная точка массой m=900кг движется по горизонтальной прямой под действием силы F=270t. Определить скорость точки в момент времени t=2c, если при $t_0=0$ скорость $\upsilon_0=10\, \text{м/c}$.
- 78. Гармонические колебания величины s описываются уравнением $s = 0.02\cos(6\pi t + \pi/3)$. Определите амплитуду колебаний.
- 79. Гармонические колебания величины s описываются уравнением $s = 0.7\cos(5\pi t + \pi/3)$. Определите амплитуду колебаний.
- 80. Гармонические колебания величины s описываются уравнением $s = 10\cos(\pi t/5 + \pi/4)$. Определите циклическую частоту.
- 81. Гармонические колебания величины s описываются уравнением $s = 10\cos(\pi t/6 + \pi/3)$. Определите циклическую частоту.
- 82. Гармонические колебания величины s описываются уравнением $s = 4\cos(\pi t/6 + \pi/3)$. Определите частоту колебаний.

Критерии оценки:

- оценка «отлично» выставляется студенту, если:
- 1) полно и аргументированно отвечает по содержанию задания;

- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно.
- оценка «**хорошо**», если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1-2 ошибки, которые сам же исправляет.
- оценка «**удовлетворительно**», если студент обнаруживает знание и понимание основных положений данного задания, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил; 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; 3) излагает материал непоследовательно и допускает ошибки.
- оценка «неудовлетворительно», если
- студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал; отмечаются такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.
- оценка «зачтено» выставляется студенту, если

Полное верное решение. В логическом рассуждении и решении нет ошибок, задача решена рациональным способом. Получен правильный ответ. Ясно описан способ решения.

- оценка «не зачтено»	
Решение неверное или отсутствует	
Составитель	Б.Дж. Гулбоев
(подпись)	
«» августа 2025г.	

МОУ ВО РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ КАФЕДРА МАТЕМАТИКИ И ФИЗИКИ

Дисциплина «Теоретическая механика» Направление подготовки - 01.03.01 «Математика» Форма подготовки - очная Уровень подготовки - бакалавриат

Тестовые задания **Формируемые компетенции**

ОПК-2-Способен проводить научные исследования физических объектов, систем и процессов, обрабатывать и представлять экспериментальные данные **ОПК-2** - Способностью проводить научные исследования в избранной области экспериментальных и (или) теоретических физических исследований с помощью современной приборной базы (в том числе сложного физического

оборудования) и информационных технологий с учетом отечественного и зарубежного опыта

- **ПК-4** Способностью проектировать, организовывать и анализировать педагогическую деятельность, обеспечивая последовательность изложения материала и междисциплинарные связи физики с другими дисциплинами
- @1. Заданы уравнения движения точки $x = 1 + 2\sin 0.1t$, y = 3t. Определите координату x точки в момент времени, когда её координата y = 12 м.
- \$A) 1,78; \$B) 1,5; \$C) 1,4; \$D) 1,38; \$E) 2;
- @2. Заданы уравнения движения точки $x = 3 + 2\cos 0,4t$, y = 4t. Определите координату x точки в момент времени, когда её координата y = 16 м.
- \$A) 2,37; \$B) 2,94; \$C) 2,4; \$D) 2,38; \$E) 2;
- @3. Заданы уравнения движения точки $y = 4 \cos 0.3t$, x = 6t. Определите координату y точки в момент времени, когда её координата x = 12м.
- \$A) 3,37; \$B) 3,54; **\$C**) 3,17; \$D) 3,78; \$E) 3;
- @4. Заданы уравнения движения точки $y = 6 \sin 0.7t$, x = 2t. Определите координату y точки в момент времени, когда её координата x = 6 м.
- \$A) 5,37; \$B) 5,54; \$C) 5,17; **\$D**) 5,14; \$E) 5;
- @5. Заданы уравнения движения точки $y = 2 + \sin 0.9t$, x = 5t. Определите координату y точки в момент времени, когда её координата x = 10м.
- \$A) 2,37; \$B) 2,54; \$C) 2,17; \$D) 2,14; \$E) 2,97;
- @6. Заданы уравнения движения точки x = 3t, $y = t^2$. Определить расстояние точки от начала координат в момент времени t = 2c.
- \$A) 7,21; \$B) 6,15; \$C) 5,14; \$D) 6,78; \$E) 5,38;
- @7. Заданы уравнения движения точки x = 5t, y = 4t + 1. Определить расстояние точки от начала координат в момент времени t = 1c.
- \$A) 6,21; **\$B**) 7,07; **\$C**) 7,14; **\$D**) 7,58; **\$E**) 4,28;
- @8. Заданы уравнения движения точки $x = t^2 + 2$, y = 3t. Определить расстояние точки от начала координат в момент времени t = 2c.
- \$A) 6,21; \$B) 8,07; **\$C**) 8,49; \$D) 8,38; \$E) 6,28;
- @9. Заданы уравнения движения точки x = 2t 4, $y = t^2 + 1$. Определить расстояние точки от начала координат в момент времени t = 3c.
- \$A) 16,21; \$B) 8,07; \$C) 9,49; **\$D**) 10,2; \$E) 10,28;
- @ 10. Заданы уравнения движения точки x = 3t + 6, $y = t^2 2$. Определить расстояние точки от начала координат в момент времени t = 3c.
- \$A) 16,21; \$B) 18,07; \$C) 19,49; \$D) 10,2; \$E) 16,55;
- @11. Заданы уравнения движения точки x = 2t, y = t. Определить время t, когда расстояние от точки до начала координат достигнет 10м.
- \$A) 4,47; \$B) 3,25; \$C) 2,16; \$D) 3,45; \$E) 4,22;
- @12. Заданы уравнения движения точки x = 4t, y = 2t. Определить время t, когда расстояние от точки до начала координат достигнет 10 м.
- \$A) 4,47; \$B) 2,24; \$C) 3,45; \$D) 2,45; \$E) 3,22;

```
@13. Заданы уравнения движения точки x = 6t, y = 2t. Определить время t,
когда расстояние от точки до начала координат достигнет 12 м.
$A) 1,47; $B) 1,24; $C) 1,9; $D) 1,45; $E) 2,22;
@14.
Заданы уравнения движения точки x = 6t, y = 2t. Определить время t, когда
расстояние от точки до начала координат достигнет 13м.
$A) 2,47; $B) 2,24; $C) 2,9; $D) 2,06; $E) 2,22;
@15. Заданы уравнения движения точки x = 2t, y = 2t. Определить время t,
когда расстояние от точки до начала координат достигнет 14м.
$A) 4.17; $B) 3.34; $C) 4.9; $D) 3.06; $E) 4.95;
@16. Заданы уравнения движения точки x = 2t, y = 1 - 2\sin 0.1t. Определить
ближайший момент времени, когда точка пересечет ось Ox.
$A) 5,24; $B) 4,47; $C) 3,26; $D) 5,17; $E) 4,15;
@17. Заданы уравнения движения точки x = 3t, y = 1 - 4\sin 0.2t. Определить
ближайший момент времени, когда точка пересечет ось Ox.
$A) 2,24; $B) 1,26; $C) 4,26; $D) 1,17; $E) 2,15;
@18. Заданы уравнения движения точки x = 1 - 2\cos 0.6t, y = 4t. Определить
ближайший момент времени, когда точка пересечет ось O_V.
$A) 1,24; $B) 1,36; $C) 1,75; $D) 1,17; $E) 1,15;
@19. Заданы уравнения движения точки x = 1 - 4\cos 0.4t, y = 4t. Определить
ближайший момент времени, когда точка пересечет ось O_V.
$A) 3,17; $B) 3,16; $C) 2,75; $D) 3,3; $E) 2,15;
@20. Заданы уравнения движения точки x = 1 - 8\cos 0.5t, y = 4t. Определить
ближайший момент времени, когда точка пересечет ось Оу.
$A) 3,17; $B) 2,16; $C) 2,75; $D) 3,3; $E) 2,89;
@21. Дано уравнение движение точки \bar{r} = t^2 \bar{t} + 2t \bar{t} + 3k. Определить модуль
скорости точки в момент времени t = 2c.
$A) 4,47; $B) 3,26; $C) 5,42; $D) 3,17; $E) 4,22;
@22. Дано уравнение движение точки \bar{r} = 4t\bar{i} + 2t^2 \bar{j} + 3t\bar{k}. Определить модуль
скорости точки в момент времени t = 2c.
$A) 7,47; $B) 9,43; $C) 8,42; $D) 6,17; $E) 5,22;
@23. Дано уравнение движение точки \bar{r} = 4\bar{i} + 6t\bar{i} - 4t^3\bar{k}. Определить модуль
скорости точки в момент времени t = 1c.
$A) 17,48; $B) 19,54; $C) 13,42; $D) 16,88; $E) 15,27;
@24. Дано уравнение движение точки \bar{r} = 3t\bar{i} - 6t^2\bar{j} + 7k\bar{k}. Определить модуль
скорости точки в момент времени t = 1c.
$A) 14,48; $B) 15,54; $C) 13,42; $D) 12,37; $E) 13,27;
@25. Дано уравнение движение точки \bar{r} = 4t^2\bar{i} + t^2\bar{j} + \bar{k}. Определить модуль
скорости точки в момент времени t = 2c.
$A) 14,48; $B) 17,54; $C) 17,42; $D) 18,37; $E) 16,49;
@26. Даны уравнения движения точки x = t^2, y = \sin \pi t, z = \cos \pi t. Определить
модуль скорости точки в момент времени t = 1c.
```

\$A) 3,72; \$B) 4,75; \$C) 2,65; \$D) 1,15; \$E) 3,78;

```
@27. Даны уравнения движения точки x = t^3, y = \sin \pi t / 2, z = \cos \pi t / 2.
Определить модуль скорости точки в момент времени t = 1c.
$A) 3,72; $B) 3,39; $C) 4,65; $D) 2,15; $E) 3,78;
@28. Даны уравнения движения точки x = 2t^2, y = 4\sin \pi t/2, z = 2\cos \pi t/2.
Определить модуль скорости точки в момент времени t = 1c.
$A) 3,72; $B) 5,39; $C) 5,09; $D) 4,15; $E) 2,78;
@29. Даны уравнения движения точки x = 3t^2, y = 3\sin \pi t, z = 5\cos \pi t.
Определить модуль скорости точки в момент времени t = 2c.
$A) 13,72; $B) 14,49; $C) 15,18; $D) 15,26; $E) 12,78;
@30. Даны уравнения движения точки x = 2\sin 3\pi t, y = 4\cos 2\pi t, z = 4t.
Определить модуль скорости точки в момент времени t = 2c.
$A) 17,72; $B) 18,49; $C) 19,18; $D) 18,26; $E) 19,27;
@31. Скорость автомобиля равномерно увеличивается в течение 12 с от нуля
до 60 км/ч. Определить ускорение автомобиля.
$A) 1,39; $B) 1,45; $C) 2,15; $D) 1,01; $E) 2,05;
@32. Скорость автомобиля равномерно увеличивается в течение 14 с от нуля
до 50 км/ч. Определить ускорение автомобиля.
$A) 1,39; $B) 0,99; $C) 1,08; $D) 1,01; $E) 2,05;
@33. Скорость автомобиля равномерно увеличивается в течение 15 с от нуля
до 40 км/ч. Определить ускорение автомобиля.
$A) 0,39; $B) 0,99; $C) 0,74; $D) 0,5; $E) 1,05;
@34. Скорость автомобиля равномерно увеличивается в течение 7 с от нуля
до 30 км/ч. Определить ускорение автомобиля.
$A) 1,64; $B) 1,78; $C) 1,25; $D) 1,19; $E) 1,05;
@35. Скорость автомобиля равномерно увеличивается в течение 6 с от нуля
до 50 км/ч. Определить ускорение автомобиля.
$A) 2,64; $B) 2,78; $C) 2,25; $D) 2,19; $E) 2,31;
@36. Точка движется по прямой с ускорением w = 0.5 \,\mathrm{m/c^2}. Определите, за
какое время будет пройдено расстояние 9 м, если при t_0 = 0 скорость v_0 = 0.
$A) 6; $B) 4; $C) 3; $D) 5; $E) 7;
@37. Точка движется по прямой с ускорением w = 0.6 \,\mathrm{m/c^2}. Определите, за
какое время будет пройдено расстояние 12 м, если при t_0 = 0 скорость \upsilon_0 = 0.
$A) 6.45; $B) 6.32; $C) 3.12; $D) 3.78; $E) 4.12;
@38. Точка движется по прямой с ускорением w = 0.7 \,\mathrm{m/c^2}. Определите, за
какое время будет пройдено расстояние 18 м, если при t_0 = 0 скорость v_0 = 0.
$A) 6,45; $B) 7,32; $C) 7,17; $D) 6,78; $E) 6,12;
@39. Точка движется по прямой с ускорением w = 0.9 \,\mathrm{m/c^2}. Определите, за
какое время будет пройдено расстояние 24 м, если при t_0 = 0 скорость v_0 = 0.
$A) 6,45; $B) 8,32; $C) 7,17; $D) 7,3; $E) 8,12;
@40. Точка движется по прямой с ускорением w = 1.4 \text{ м/c}^2. Определите, за
какое время будет пройдено расстояние 24 м, если при t_0 = 0 скорость v_0 = 0.
$A) 4,45; $B) 5,32; $C) 6,17; $D) 4,3; $E) 5,86;
```

- @41. Ускорение точки $\overline{w} = 0.5t\overline{i} + 0.2t^2 j$. Определить модуль ускорения в момент времени t = 2 с.
- **\$A)** 1,28; **\$B)** 1,45; **\$C)** 4,23; **\$D)** 2,36; **\$E)** 3,21;
- @42. Ускорение точки $\overline{w} = 0.6t\overline{i} + 0.4t^2 j$. Определить модуль ускорения в момент времени t = 2 с.
- \$A) 1,28; \$B) 2; \$C) 2,23; \$D) 1; \$E) 2,21;
- @43. Ускорение точки $\overline{w} = 4t\overline{i} + 2t^2 \overline{j}$. Определить модуль ускорения в момент времени t = 2 c.
- \$A) 12,28; \$B) 13,67; **\$C**) 11,31; \$D) 15,36; \$E) 14,21; @44.

Ускорение точки $\overline{w} = 4t^2i + 5tj$. Определить модуль ускорения в момент времени t = 1c.

\$A) 3,28; \$B) 4,67; \$C) 5,9; **\$D**) 6,4; \$E) 4,21;

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Оценка по	Диапазон	Численное	Оценка по традиционной
буквенной	соответствующих	выражение	системе
системе	наборных баллов	оценочного балла	
A	10	95-100	Ommy
A-	9	90-94	Отлично
B+	8	85-89	
В	7	80-84	Хорошо
В-	6	75-79	_
C+	5	70-74	
C	4	65-69	
C-	3	60-64	V
D+	2	55-59	Удовлетворительно
D	1	50-54	
Fx	0	45-49	Неудовлетворительно

Составитель		Б.Дж. Гулбоев
(под	дпись)	
‹ ‹	» августа 2025 г.	