МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

Декан стественнонаучного факультета
Муродзода Д.С.

научный 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Комплексный анализ (ТФКП)»

Направление подготовки – 01.03.01 «Математика» Профиль подготовки «Общая математика» Форма подготовки – очная Уровень подготовки – бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства образования и науки РФ о т 10.01.2018г. № 8

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению;
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1от «28» августа 2024г.

Рабочая программа утверждена УМС <u>Естественнонаучного факультета</u>, протокол № <u>1</u> от «29» <u>августа</u> 2024г.

Рабочая программа утверждена Ученым советом <u>Естественнонаучного</u> факультета, протокол № 1 от «30 » 08. 2024г.

Заведующий кафедрой к.ф-м.н., доцент

Гаибов Д.С.

Зам.председателя УМС факультета

HB

Халимов И. И.

Разработчик: д.ф-м.н., профессор

Курбаншоев С.З.

Разработчик от организации:

Каримов О.Х

Расписание занятий дисциплины

Таблица 1

Ф.И.О.	Ауди	торные занятия	Приём	Место работы
преподавателя	лекция	Практические занятия (КСР, лаб.)	СРС	преподавателя
Курбаншоев С.3.				РТСУ, второй корпус, 203 каб. кафедра математики и физики

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Целями дисциплины «Комплексный анализ (ТФКП)» являются:

- обучение студентов основам теории функций комплексного переменного;
- ознакомление студентов с приложениями этой теории в физике. Особое внимание уделяется связи этой дисциплины с другими, отличию комплексного анализа от действительного анализа;
- научить студентов самостоятельно решать задачи комплексного анализа среднего уровня сложности.

1.2. Задачи изучения дисциплины

Задачами дисциплины «Комплексный анализ (ТФКП)» являются:

- обеспечить усвоение студентами данной дисциплины;
- создать базу для изучения завершающих разделов курса и специальных дисциплин;
- использовать эти знания как ступени формирования способностей будущих специалистов-физиков к ведению исследовательской работы и решению практических задач. Эти задачи достигаются
- овладением основными методами теории функций комплексного переменного;
- формированием основных представлений о комплексных числах и действиях с ними;
- изучением основных свойств функций комплексного переменного;
- исследованием связи между функциями вещественной и комплексной переменной.

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Таблина 2

Коды ком-	Содержание	Перечень планируемых результатов обучения	Вид оценоч-
петенции	компетенций	по дисциплине	ного средства
ПК-4.	Способен	ИПК-4.1. Анализирует предлагаемое	Разно
	формировать	обучающимся рассуждение с результатом:	уровневые
	способность к	подтверждает его правильность или находит	задачи
	логическому	ошибки и анализирует причины их	
	рассуждению,	возникновения; помогает обучающимся в	
	убеждению,	самостоятельной локализации	
	математическо	ошибки, ее исправлении; оказание помощи в	
	му	улучшении	
	доказательству	рассуждения;	
	И	ИПК-4.2 Формирует способности к	70
	подтверждени	логическому рассуждению и коммуникации,	Решение

	ю его правильности	установки на использование этой способности, на ее ценность. ИПК-4.3 Формирует у обучающихся убеждение в абсолютности математической истины и математического доказательства, предотвращать формирование модели поверхностной имитации действий, ведущих к успеху, без ясного понимания смысла; поощрять выбор различных путей в решении поставленной задачи	тест
ПК-5	Способен организовать исследования в области математики	ИПК-5.1 Организует самостоятельную деятельность обучающихся, в том числе исследовательскую; ИПК-5.2 Развивает инициативы обучающихся по использованию математики и научной исследование; ИПК-5.3 Владеет основными положениями классических разделов математической науки, базовыми идеями и методами математики, системой основных математических структур и аксиоматическим методом.	Разно уровневые задачи Решение задач тест
ПК-6	Способен выявлять у обучающихся умения пользоваться заданной математическо й моделью	ИПК-6.1 Формирует способности к постижению основ математических моделей реального объекта или процесса, готовности к применению моделирования для построения объектов и процессов; ИПК-6.2 Формирует у обучающихся умения пользоваться заданной математической моделью, в частности, формулой, геометрической конфигурацией, алгоритмом, оценивать возможной результат моделирование ИПК-6.3 Владеет математикой как универсальным языком науки, средством моделирования явлений и процессов, способен пользоваться построением математических моделей для решения практических проблем.	Разно уровневые задачи Решение задач тест

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Комплексный анализ (ТФКП)» относится к обязательной дисциплине базовой части (Б1.О.21). Дисциплина читается студентам на 6 и 7 семестре.

При освоении данной дисциплины необходимы умения и готовность («входные» знания) обучающегося по дисциплинам 1-4, указанных в Таблице 2. Дисциплина 5 изучается параллельно, а также некоторая её часть является «входной».

Таблица 3

No	Название дисциплины	Семестр	Место дисциплины в ст руктуре ОПОП
1.	Математический анализ	1 - 4	Б1.В.11
2.	Высшая алгебра	1 - 3	Б1.О.15
3.	Аналитическая геометрия	1 - 2	Б1.О.14
4.	Уравнения с частными производными	3 - 4	Б1.В.07
5.	Функциональный анализ	5 – 6	Б1.О.20

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем дисциплины «Комплексный анализ (ТФКП)» составляет:

7-й семестр: 4 зачетные единицы, всего 144 часов, из которых: лекции - 16 часов, практические занятия - 16 часов, КСР - 16 часов, самостоятельная работа - 42ч + 54 контроль часа, всего часов аудиторной нагрузки - 48 часа, в том числе в интерактивной форме 38 часов - экзамен.

3.2. Структура и содержание теоретической части курса VII семестр

Тема 1. Понятие о модуле и аргументе. Теоремы. 2 часа

(Формула Муавра. Свойства модуля и аргумента комплексного числа. Теоремы, следствия, определения.)

Тема 2. Функции комплексного переменного. Предел и непрерывность функции.
2 часа

(Функция одной переменной. Однозначная функция комплексной переменной. Действительная и мнимая часть функции комплексной переменной. Свойства пределов. Тригонометрические пределы.)

Тема 3. Однолистные функции. Обратные функции. Понятие о точках разветвления и Риманово поверхности. 2 часа

(Локальная однолистность. Принцип однолистности. Риманова поверхность. Определение обратной функции. Связные определения. Разложение в степенной ряд)

Тема 4. Теорема о непрерывности суммы ряда. Понятие области сходимости степенного ряда. 2 часа

(Непрерывность суммы ряда. Функциональные ряды. Степенные ряды. Область сходимости ряда. Свойства.)

Тема 5. Теорема Римана о конформном отображении. Интеграл от функции комплексного переменного. Свойства. 2 часа

(Теорема Римана об отображении, замечания, единственность отображения, вариации и обобщения. Интегрирование функции комплексного переменного.)

Тема 6. Ряды аналитических функций. Равномерно сходящиеся ряды аналитических функций. 2 часа

(Аналитическая функция вещественной переменной. Однозначная аналитическая функция одной комплексной переменной. Свойства. Примеры. Равномерно сходящиеся ряды аналитических функций. Первая теорема Вейерштрасса.)

Тема 7. Ряд Лорана. Разложение аналитической функции в ряд Лорана. 2 часа (Теорема Лорана о разложении функции в ряд по целым степеням. Примеры разложения функций в ряд Лорана. Свойства. Теорема Лорана.)

Тема 8. Теория вычетов. Вычет функции относительно изолированной особой точки. Основная теорема. 2 часа

(Вычет функции в изолированной особой точке. Вычеты и их вычисления. Основные формулы для нахождения вычетов.)

Итого16 ч

3.2. Структура и содержание практической части курса VII семестр

- Тема 1. Предел последовательности. Понятие сходящейся последовательности комплексных чисел. Критерий Коши. Числовая сфера. Бесконечность и стереографическая проекция. Множества точек на плоскости. 2 часа
- Тема 2. Понятие о квазиконформных отображениях. Гармонические и сопряженные гармонические функции. Гидромеханическое истолкование аналитической функции. Примеры. 2 часа
- Тема 3. Ряды функций. Понятие равномерно сходящегося ряда. Признак равномерно сходящегося ряда. 2 часа
- Тема 4. Конформное отображение. Геометрический смысл дифференциала. Примеры конформных отображений совершенных с помощью дробно-линейной функции. Преобразование $W = Z^n$, $W = e^z$, преобразование H.E. Жуковского. 2 часа
- Тема 5. Основная теорема Коши. Интегральная формула Коши. Доказательство теоремы Коши. О предельных значениях интеграла типа Коши. Интеграл Пуассона и формула Шварца. 2 часа
- Тема 6. Понятие голоморфной функции и его эквивалентность с понятием аналитической функции. Принцип максимального модуля. Нули аналитической функции. Неравенства Коши для коэффициентов степенного ряда. Теорема Лиувилля. Вторая теорема Вейерштрасса. 2 часа
- Тема 7. Классификация особых точек. Полюс. Связь между нулем и полюсом. Окрестность бесконечно удаленной точки. Разложение Лорана в окрестности бесконечно удаленной точки. Условия обращения интеграла типа Коши в интеграл Коши. 2 часа
- Тема 8. Аналитическое продолжение. Процесс аналитического продолжения функции по Вейерштрассу. Примеры аналитического продолжения функций. 2 часа

Итого 16 ч

3.3. Структура и содержание КСР

VII семестр

Занятие 1. Геометрическое построение произведения и частных комплексных чисел. 2 часа

Занятие 2. Линия Жордана. Теорема о равномерной непрерывности. Производная функции комплексного переменного. Дифференциал функции. Геометрический смысл аргумента и модуля производной. 2 часа

Занятие 3. Показательная, тригонометрическая и гиперболическая функции. Радикал, логарифм и арксинус. 2 часа

Занятие 4. Круг сходимости. Определение радиуса сходимости. 2 часа

Занятие 5. Сведение к вычислению обыкновенного интеграла. 2 часа

Занятие 6. Первая теорема Вейерштрасса. Ряд Тейлора. Разложение аналитической функции. 2 часа

Занятие 7. Правильная и главная части ряда Лорана. Единственность разложения Лорана. 2 часа

Занятие 8. Вычисление вычета функции относительно полюса. Вычисление определенных интегралов. Приложение теории вычетов. 2 часа

Итого 16 ч

Таблица 4

	Виды учебной работы,					Кол-во	
№	Раздел	включая самостоятельную работу студентов				Лит-	баллов
Π/Π							В
11/11	дисциплины		и трудоемкость (в ч)			pa	неделю
		Лек.	Пр.	КСР	CPC		
	VII c	еместр			, ,		
1	Понятие о модуле и аргументе.	2	_				11,5
	Теоремы.						
	Геометрическое построение			2	3	1-5	
	произведения и частных						
	комплексных чисел.						
2	Предел последовательности.		2	_			11,5
	Понятие сходящейся						
	последовательности комплексных						
	чисел. Критерий Коши. Числовая				2	1-5	
	сфера. Бесконечность и						
	стереографическая проекция.						
	Множества точек на плоскости						
1	Функции комплексного	2	_				11,5
	переменного. Предел и						
	непрерывность функции.						
	Линия Жордана. Теорема о			2			
	равномерной непрерывности.				3	1 5	
	Производная функции				3	1-5	
	комплексного переменного.						
	Дифференциал функции.						
	Геометрический смысл аргумента и						
1 1	модуля производной.						
	Понятие о квазиконформных	_	2	_			11,5
	отображениях. Гармонические и						
	сопряженные гармонические					1 5	
	функции.				2	1-5	
	Гидромеханическое истолкование						
	аналитической функции. Примеры.						
5	Однолистные функции. Обратные	2	_		2	1.5	11,5
	функции. Понятие о точках				3	1-5	ĺ

	D						
	разветвления и Риманово						
	поверхности.						
	Показательная, тригонометрическая			2			
	и гиперболическая функции.						
	Радикал, логарифм и арксинус.		_				
6	Ряды функций. Понятие	_	2	_			11,5
	равномерно сходящегося ряда.				2	1-5	
	Признак равномерно сходящегося					1 3	
	ряда.						
7	Теорема о непрерывности суммы	2	_				11,5
	ряда. Понятие области сходимости						
	степенного ряда.				3	1-5	
	Круг сходимости. Определение			2			
	радиуса сходимости						
8	Конформное отображение.	_	2	_			11,5
	Геометрический смысл						
	дифференциала. Примеры						
	конформных отображений					1.7	
	совершенных с помощью дробно-				2	1-5	
	линейной функции.						
	Преобразование $W = Z^n$, $W = e^z$,						
	преобразование Н.Е. Жуковского.						
9	Теорема Римана о конформном	2	_				11,5
	отображении. Интеграл от функции	_					
	комплексного переменного.						
	Свойства.				3	1-5	
	Сведение к вычислению			2			
	обыкновенного интеграла.			_			
10	Основная теорема Коши.	_	2	_			11,5
	Интегральная формула Коши.		_				11,0
	Доказательство теоремы Коши.						
	О предельных значениях интеграла				2	1-5	
	типа Коши. Интеграл Пуассона и						
	формула Шварца.						
11	Ряды аналитических функций.	2	_				11,5
11	Равномерно сходящиеся ряды						11,5
	аналитических функций.						
	Первая теорема Вейерштрасса. Ряд			2	3	1-5	
	Тейлора. Разложение						
	аналитической функции						
12	Понятие голоморфной функции и		2				11,5
12	понятие голоморфной функции и его эквивалентность с понятием	_		_			11,3
	аналитической функции.						
	Принцип максимального модуля.				2	1 5	
	Нули аналитической функции.				2	1-5	
	Неравенства Коши для						
	коэффициентов степенного ряда.						
	Теорема Лиувилля. Вторая теорема						
	Вейерштрасса.						

13	Ряд Лорана. Разложение	2	_				11,5
	аналитической функции в ряд						,
	Лорана.			2	_	1 ~	
	Правильная и главная части ряда				3	1-5	
	Лорана. Единственность						
	разложения Лорана.						
14	Классификация особых точек.	_	2	_			11,5
	Полюс. Связь между нулем и						
	полюсом. Окрестность бесконечно						
	удаленной точки. Разложение				2	1.5	
	Лорана в окрестности бесконечно				2	1-5	
	удаленной точки. Условия						
	обращения интеграла типа Коши в						
	интеграл Коши.						
15	Теория вычетов. Вычет функции	2	_				11,5
	относительно изолированной						
	особой точки. Основная теорема.						
	Вычисление вычета функции			2	3	1-5	
	относительно полюса. Вычисление						
	определенных интегралов.						
	Приложение теории вычетов.						
16	Аналитическое продолжение.	_	2	_			11,5
	Процесс аналитического						
	продолжения функции по				2	1-5	
	Вейерштрассу. Примеры					1-3	
	аналитического продолжения						
	функций.						
17	Построение Римановой	_	_				11,5
	поверхности. Особые точки на						
	границе круга сходимости						
	степенного ряда. Примеры			_			
	построения римановых				2	1-5	
	поверхностей. Определение						
	радиуса сходимости степенного						
	ряда по известному расположению						
	особых точек функции.						
	Итого по семестру:	16	16	16	42		100

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль.

Итоговая форма контроля по дисциплине (экзамен) проводится в форме тестирования.

для студентов 4 курса

Таблица 5.

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практически х (семинарски х) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Всего
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр

$$ME = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0.49 + 3u \cdot 0.51$$

 $\it где\ \it UБ-umo\it говый\ \it балл,\ \it P_{\it I}$ - итоги первого рейтинга, $\it P_{\it 2}$ - итоги второго рейтинга, $\it Ju-$ результаты итоговой формы контроля (экзамен).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и практическую составляющие обучения. При этом обеспечивается упорядочивание теоретических знаний, что, в конечном счёте, приводит к повышению мотивации

обучающихся в их освоении. Самостоятельная работа планируется и организуется с углубления расширения теоретических знаний, целью И формирования самостоятельного логического мышления. Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для форми-(ключевых) компетенций категории рования базовых интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном Из всех ключевых уровне. компетенций, формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Комплексный анализ (ТФКП)» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- Активная работа на лекциях
- Активная работа на практических занятиях
- Контрольно-обучающие программы тестирования (КОПТ).
- Выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- Проработка лекционного материала,
- Подготовка к практическим занятиям,
- Подготовка к аудиторным контрольным работам,
- Выполнение ИДЗ,
- Подготовка к защите ИДЗ,
- Подготовка к зачету, экзамену.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Комплексный анализ (ТФКП)» включает в себя:

Таблина 6

№ п/п	Объем СРС в ч	Тема СРС	Форма и вид СРС	Форма контроля
VII семестр				Hellip evili
1	1	Мероморфные функции, пример. Эквивалентность 2-х определений.	Письменное решение упражнений и задач. ИДЗ	тест
2	1	Вычеты и их вычисление, пример.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы

				е задачи
3	1	Основная теорема о вычетах.	Письменное решение упражнений и задач. ИДЗ	Решение задач
4	1	Принцип аргумента.	Письменное решение упражнений и задач. ИДЗ	тест
5	1	Теорема Руше. пример.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
6	1	Теорема единственности.	Письменное решение упражнений и задач. ИДЗ	Решение задач
7	1	Целые функции. Теорема Коши-Лиувилля.	Письменное решение упражнений и задач. ИДЗ	тест
8	1	Принцип максимума модуля.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи
9	1	Теорема Вейерштрасса.	Письменное решение упражнений и задач. ИДЗ	Решение задач
10	1	Принцип симметрии Шварца.	Письменное решение упражнений и задач. ИДЗ	тест
11	1	Аналитическое продолжение функции. Непосредственное аналитическое продолжение элементов. Аналитическое продолжение через цепочку областей. Пример.	Письменное решение упражнений и задач. ИДЗ	Разно уровневы е задачи Разно уровневы е задачи
12	1	Аналитическое продолжение вдоль пути. Пример.	Письменное решение упражнений и задач. ИДЗ	Решение задач
13	1	Функция комплексного переменного, ее предел, непрерывность, дифференцируемость. Функция $\exp z$.	Письменное решение упражнений и задач. ИДЗ	тест
14	1	Условия Коши-Римана.	Письменное решение упражнений и задач. ИДЗ	
15	1	Определение регулярной функции. Необходимое и достаточное условие регулярности.	Письменное решение упражнений и задач. ИДЗ	Решение задач
16 D	1	Регулярность основных элементарных функций (док-во для expz, sinz, log z.z°).	Письменное решение упражнений и задач. ИДЗ	тест
Всег	о: 16 ч.			

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Индивидуальные домашние задания (ИДЗ) по дисциплине «Комплексный анализ (ТФКП)» предназначены для студентов очной форм обучения нематематических

факультетов, изучающих курс математики в соответствии с требованиями Федеральных государственных образовательных стандартов (ФГОС) по соответствующим направлениям подготовки. Работа содержит 12 индивидуальных домашних заданий (ИДЗ) по 30 вариантов в каждом, содержащих различные задания по дисциплине «Комплексный анализ (ТФКП)».

Целью настоящего комплекта ИДЗ является ознакомление студентов с основами линейной алгебры и началами математического анализа. При решении заданий по линейной алгебре учащиеся отработают навыки действий с определителями и матрицами, а также решения систем неоднородных и однородных линейных алгебраических уравнений. При решении заданий по математическому анализу студенты освоят технику вычисления пределов функции, получат навыки исследования функций одной переменной применением аппарата дифференциального исчисления.

В целом, самостоятельное решение индивидуальных заданий позволяет углубить теоретические знания, отработать практические навыки решения задач по дисциплине. Во введении к работе приведены примеры решения типовых заданий по теме с необходимыми методическими указаниями.

Накопление большого количества оценок за ИДЗ, самостоятельные и контрольные работы в аудитории позволяет контролировать учебный процесс, управлять им, оценивать качество усвоения изучаемого материала.

4.3. Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета. Рисунки выполняются простыми карандашами. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Φ .И.О. студента, направление, курс и группа.

4.4. Критерии оценки выполнения самостоятельной работы по дисциплине «Комплексный анализ (ТФКП)»

Критериями оценок результатов внеаудиторной самостоятельной работы студента являются:

- -уровень освоения студентов учебного материала;
- -умения студента использовать теоретические знания при выполнении практических задач;
 - -сформированность обще учебных умений;
- -умения студента активно использовать электронные образовательные ресурсы, находить требующуюся информацию, изучать ее и применять на практике;
 - -обоснованность и четкость изложения ответа;
 - -оформление материала в соответствии с требованиями;
 - -умение ориентироваться в потоке информации, выделять главное;

- -умение четко сформулировать проблему, предложив ее решение, критически оценить решение и его последствия;
- -умение показать, проанализировать альтернативные возможности, варианты действий;
 - -умение сформировать свою позицию, оценку и аргументировать ее.

Критерии оценки самостоятельной работы студентов:

Оценка «5» ставится тогда, когда:

- -Студент свободно применяет знания на практике;
- -Не допускает ошибок в воспроизведении изученного материала;
- -Студент выделяет главные положения в изученном материале и не затрудняется в ответах на видоизмененные вопросы;
 - -Студент усваивает весь объем программного материала;
 - -Материал оформлен аккуратно в соответствии с требованиями;

Оценка «4» ставится тогда, когда:

- -Студент знает весь изученный материал;
- -Отвечает без особых затруднений на вопросы преподавателя;
- -Студент умеет применять полученные знания на практике;
- -В условных ответах не допускает серьезных ошибок, легко устраняет определенные неточности с помощью дополнительных вопросов преподавателя;
 - -Материал оформлен недостаточно аккуратно и в соответствии с требованиями;

Оценка «3» ставится тогда, когда:

- -Студент обнаруживает освоение основного материала, но испытывает затруднения при его самостоятельном воспроизведении и требует дополнительных дополняющих вопросов преподавателя;
- -Предпочитает отвечать на вопросы воспроизводящего характера и испытывает затруднения при ответах на воспроизводящие вопросы;
 - -Материал оформлен не аккуратно или не в соответствии с требованиями;

Оценка «2» ставится тогда, когда:

- -У студента имеются отдельные представления об изучаемом материале, но все, же большая часть не усвоена;
 - -Материал оформлен не в соответствии с требованиями.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Основная литература

- 1. Далингер, В. А. Комплексный анализ: учебное пособие для вузов / В. А. Далингер, С. Д. Симонженков. 2-е изд., испр. и доп. Москва [Электронный ресурс]: Издательство Юрайт, 2019. 143 с. https://biblio-online.ru
- 2. *Аксенов, А. П.* Теория функций комплексной переменной в 2 ч. Часть 1: учебник и практикум для академического бакалавриата / А. П. Аксенов. Москва [Электронный ресурс]: Издательство Юрайт, 2019. 313 с. https://biblio-online.ru
- 3. *Привалов, И. И.* Введение в теорию функций комплексного переменного [Электронный ресурс]: учебник для вузов / И. И. Привалов. Москва: Издательство Юрайт, 2019. 402 с. https://biblio-online.ru
- 4. Эйдерман, В. Я. Теория функций комплексного переменного и операционное исчисление: учебное пособие для академического бакалавриата / В. Я. Эйдерман. 2-е изд., испр. и доп. Москва [Электронный ресурс]: Издательство Юрайт, 2019. 263 с. https://biblio-online.ru

5.2. Дополнительная литература.

- 1. Вулих Б.3. Краткий курс теории функций вещественной переменной. М.: Наука, 1973, 351с.
- 2. Натансон И.П. Теория функций вещественной переменной. М.: Наука, 1974, 480с.
- 3. Очан Ю.С. Сборник задач и теорем по теории функций действительного перемнного. М.: Просвещение, 1965. -232с.
- 4. Вулих Б.З. Введение в функциональный анализ. М.: Наука, 1967, 416с.
- 5. Фролов А.Н. Теория функций действительного переменного. М. 1961, 172с.
- 6. Александров П.С. Теория функций действительного переменного и теория топологических пространств. М.: Наука, 1978, 416с.
- 7. В.И.Богачев, О.Г. Смолянов. Действительный и функциональный анализ: университетский курс. М.-Ижевск 2009, 724с.
- 8. Н.Я. Виленкин, М.Б.Балк, В.А.Петров. Математический анализ. М.: «Просвещение», 1980, 144с.

Интернет-ресурсы:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой -1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету -5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Умение находить область определения и множество значений, нули функции, промежутки знакопостоянства и монотонности, точки экстремума — залог успешного решения задач единого экзамена. Можно выделить два обобщенных умения, связанных с исследованием свойств функций:

1) уметь «читать» график функции и переводить его свойства с графического языка на алгебраический и наоборот;

2) уметь работать с формулой, задающей функцию, обосновывая или проверяя наличие указанных свойств, что связывает задачи данного блока и с другими темами школьного курса (решение уравнений и неравенств, вычисление производных и др.)

В подготовке к решению подобных заданий поможет таблица, в которой перечислены свойства функций и дан их перевод на язык графиков.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса алгебры и начала анализа.

Например, при нахождении нулей функции нужно решать уравнения; при определении промежутков знакопостоянства функции - решать неравенства; при поиске области определения функции- находить области определения выражения.

Рекомендуется использовать текст лекций преподавателя (если он имеется), пользоваться рекомендациями по изучения дисциплины; использовать литературу, рекомендуемую составителями программы; использовать вопросы к зачету, примерные контрольные работы. Учесть требования, предъявляемые к студентам и критерии оценки знаний.

При выполнении домашних заданий необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Учебно-методический комплекс (УМК) призван помочь студенту понять специфику изучаемого материала, а в конечном итоге — максимально полно и качественно его освоить.

В первую очередь студент должен осознать предназначение комплекса: его структуру, цели и задачи. Для этого он знакомится с преамбулой, оглавлением УМК, говоря иначе, осуществляет первичное знакомство с ним.

Далее студент внимательно прочитывает и осмысливает тот раздел, задания которого ему необходимо выполнить.

Выполнение *всех* заданий, определяемых содержанием курса, предполагает работу с научными исследованиями (монографиями и статьями). Перед работой с научными источниками студенту следует обратиться к основной учебной литературе – учебным пособиям и хрестоматиям. Это позволит ему сформировать общее представление о существе интересующего вопроса.

Системный подход к изучению предмета предусматривает не только тщательное чтение специальной литературы, но и обращение к дополнительным источникам – справочникам, энциклопедиям, словарям. Эти источники — важное подспорье в самостоятельной работе студента (СРС и НИРС), поскольку глубокое изучение именно их материалов позволит студенту уверенно «распознавать», а затем самостоятельно оперировать научными категориями и понятиями, следовательно — освоить новейшую научную терминологию. Такого рода работа с литературой обеспечивает решение студентом поставленной перед ним задачи (подготовка к практическому занятию, выполнение контрольной работы и т.д.).

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории Естественнонаучного факультета, в которых проводятся занятия по дисциплине «Комплексный анализ (ТФКП)» оснащены проектором для проведения

презентаций, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих теоретические выводы и их прикладную направленность. Также в университете имеется обширный библиотечный фонд, не только печатных, но и электронных изданий, с которыми студенты могут ознакомиться в открытом доступе.

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации <u>экзамен</u>

Форма промежуточной аттестации (1 и 2 рубежный контроль) проводится путем выполнения самостоятельного задания.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

	I	THIBIA CHMBOSIOB	
Оценка по	Диапазон	Численное	Оценка по
буквенной	соответствующих	выражение	традиционной системе
системе	наборных баллов	оценочного балла	
A	10	95-100	Ommunic
A	9	90-94	Отлично
B+	8	85-89	
В	7	80-84	Хорошо
В-	6	75-79	_
C+	5	70-74	
C	4	65-69	
C-	3	60-64	V
D+	2	55-59	Удовлетворительно
D	1	50-54	
Fx	0	45-49	11
F	0	0-44	Неудовлетворительно

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.