МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ ТАДЖИКИСТАН МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКО-ТАДЖИКСКИЙ (СЛАВЯНСКИЙ) УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

«Высшая математика»
Направление подготовки – 38.03.01 «Экономика»
Профиль подготовки - «Бухгалтерский учет»
Форма подготовки – очная
Уровень подготовки – бакалавриат

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования, утвержденного приказом Министерства науки и высшего образования РФ №954 от 12.08.2020 г.

При разработке рабочей программы учитываются

- требования работодателей, профессиональных стандартов по направлению;
- содержание программ дисциплин, изучаемых на предыдущих и последующих этапах обучения;
 - новейшие достижения в данной предметной области.

Рабочая программа обсуждена на заседании кафедры математики и физики, протокол № 1 от « $2025 \, \Gamma$.

Рабочая программа утверждена УМС факультета экономики и управления, протокол № 1 от « 🚜 » августа 2025 г.

Рабочая программа утверждена Ученым советом факультета экономики и управления, протокол № 1 от « 29 » августа 2025 г.

Заведующий кафедрой, к.ф.-м.н., доцент _____ Зам. председателя УМС факультета, к.э.н., доцент _____ Разработчик, к.ф.-м.н., доцент

Гулбоев Б.Дж.

Шодиева Т.Г.

Гаибов Д.С.

Расписание занятий дисциплины

Ф.И.О. преподавателя	Аудиторн	ые занятия	Приём СРС	Место работы преподавателя
	лекция	Практические занятия (КСР, лаб.)		•
Гаибов Д.С.		Juo.,		РТСУ, второй корпус, 203 каб. кафедра математики и физики

1. ЦЕЛИ И ЗАДАЧИ ИЗУЧЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели изучения дисциплины

Целями дисциплины «Высшая математика» являются:

- воспитание достаточно высокой математической культуры;
- привитие навыков математического мышления;
- привитие навыков использования математических методов и основ математического моделирования в практической деятельности;
- умение сводить задачи принятия решений в экономике к математическим моделям, используя методы линейной алгебры;
- овладение математическими методами, использующими теорию матриц при моделировании экономических задач;
- умение анализировать совместность системы линейных уравнений и получать их решение;
- овладение математическими методами, использующимися при моделировании экономических задач;
- использование геометрических объектов при постановке и решении задач оптимизации в экономике.

1.2. Задачи изучения дисциплины:

Задачами дисциплины «Высшая математика» являются:

- повышение уровня фундаментальной математической подготовки студентов с усилением ее прикладной экономической направленности;
- ознакомить студентов с основами математического аппарата, необходимого для решения теоретических и практических задач;
- привить студентам умение самостоятельно изучать учебную литературу по математике и ее приложениям;
- развить логическое и алгоритмическое мышление;
- выработать навыки математического исследования прикладных вопросов и умение перевести экономическую задачу на математический язык.

1.3. Требования к результатам освоения дисциплины:

Процесс изучения дисциплины направлен на формирование следующих компетенций:

Таблица 2

Коды	Результаты	Перечень планируемых результатов	Вид оценоч-
ком-	освоения ОПОП	обучения по дисциплине	ного
петенции	Содержание		средства
	компетенций		_
УК-1	Способен	ИУК-1.1. Анализирует задачу, выделяя ее	Вопросы
	осуществлять	базовые составляющие	для устного
	поиск,	ИУК-1.2. Демонстрирует знание особенностей	опроса
	критический	системного и критического мышления и	
	анализ и синтез	готовность к нему	Тестовые
	информации,	ИУК-1.3. Аргументированно формирует	задания
	применять	собственное суждение и оценку информации,	закрытого
	системный подход	принимает обоснованное решение	типа
	для решения	ИУК-1.4. Рассматривает и предлагает	
	поставленных	возможные варианты решения поставленной	Тестовые
	задач	задачи, оценивая их достоинства и недостатки	задания
			открытого
			типа
ОПК-1	Способен	ИОПК-1.1. Применяет знания	Вопросы
	применять знания	микроэкономической теории на	для устного
	(на	промежуточном уровне	опроса
	промежуточном	ИОПК-1.2. Применяет знания	
	уровне)	макроэкономической теории на	Тестовые
	экономической	промежуточном уровне	задания
	теории при	ИОПК-1.3. Применяет математический	закрытого
	решении	аппарат для решения типовых экономических	типа
	прикладных задач	задач	
			Тестовые
			задания
			открытого
			типа

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Высшая математика» относится к циклу обязательных дисциплин. Студенты, обучающиеся по данной программе должны иметь знания и практические навыки по высшей и элементарной математике в соответствии с требованиями к студентам высших учебных заведений. Она является базовой дисциплиной математического и естественнонаучного цикла (Б1.О.13), изучается на 1-2 семестре.

Дисциплины 1 и 5 взаимосвязаны с данной дисциплиной, они изучаются параллельно, вместе с тем часть их необходимо как предшествующее. Теоретическими дисциплинами, для которых освоение данной дисциплины необходимо как предшествующее являются:

Таблина 3.

			Место дисцип-
$N_{\underline{0}}$	Название дисциплины	Семестр	лины в структуре
			ОПОП
1.	Микроэкономика	1-2	Б1.О.19
2.	Бухгалтерский учет и анализ	5	Б1.О.22
3.	Статистика	1-2	Б1.О.14

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, КРИТЕРИИ НАЧИСЛЕНИЯ БАЛЛОВ

Объем лисциплины «Высшая математика» составляет:

1 семестр: 4 зачетные единицы, всего 144 часа, из которых: лекции — 16 часов, практические занятия — 16 часов, КСР — 16 часов, самостоятельная работа — 42 часа+54 часа контроль, всего часов аудиторной нагрузки — 48 часов, в том числе в интерактивной форме — 8 часов, экзамен;

2 семестр: 4 зачетные единицы, всего 144 часа, из которых: лекции - 16 часов, практические занятия - 16 часов, КСР - 16 часов, самостоятельная работа - 42 часа+54 часа контроль, всего часов аудиторной нагрузки - 48 часов, в том числе в интерактивной форме - 8 часов, экзамен.

3.1. Структура и содержание теоретической части курса І семестр

Тема 1. Матрицы и определители

Действия над матрицами. (Умножение на число. Сложение матриц. Транспонирование Умножение прямоугольных матриц) – 2 часа

Тема 2. Обратная матрица (критерий существования обратной матрицы; построение обратной матрицы с помощью алгебраических дополнений и методом Γ аусса) – 2 часа

Тема 3. Векторная алгебра

Определители второго и третьего порядков и их свойства. (Основные определения. Вычисление определителей. Определитель n-го порядка) — 2 часа

Тема 4. Скалярное произведение векторов: его выражение через координаты. Угол между векторами

(Основные понятия. Скалярное произведение. Нахождение угла между векторами) – 2 часа

Тема 5. Раздел 3. Системы линейных уравнений

3.1. Однородные системы и свойства их решений.

 $(\Phi$ ундаментальная система решений. Размерность подпространства решений однородной системы) – 2 часа

Тема 6. 3.3. Матричный метод решения системы линейных уравнений. (Матричные уравнения. Метод Гаусса для отыскания решения системы) – 2 часа

Тема 7. Раздел 4. Евклидовы пространства. Линейные операторы

4.1. Скалярное произведение

(Свойства скалярного произведения; скалярные произведения в различных пространствах) – 2 часа

Тема 8. Раздел 6. Аналитическая геометрия на плоскости

6.2. Прямая на плоскости.

(Различные формы уравнения прямой на плоскости. Нормальное уравнение прямой на плоскости. Углы, образуемые двумя прямыми на плоскости) – 2 часа

Итого 16ч

II семестр

Тема 1. Раздел 1. Введение в математический анализ

Множества. Функция.

(Операции с множествами. Декартово произведение множеств. Множество вещественных чисел. Область определения функции) – 2 часа

Тема 2. Раздел 2. Предел и непрерывность функции

(Основные понятия о числовых последовательностях. Предел числовой последовательности) -2 часа

Тема 3. Раздел 3. Дифференциальное исчисление функций одной переменной

3.1. Определение производной в точке и на множестве.

(Геометрический и экономический смысл производной в точке. Уравнения касательной и нормали) – 2 часа

Тема 4. 3.3. Дифференцирование сложных функций, неявных функций и функций, заданных параметрическими уравнениями. Производные высших порядков

(Способы дифференцирования, понятие неявных функций, функции заданные параметрически. Нахождение производных высших порядков) – 2 часа

Тема 5. Раздел 4. Исследование функций

(Определение монотонных функций. Достаточные признаки монотонности. Точки экстремума и экстремум функции. Необходимые и достаточные условия экстремума. Наименьшее и наибольшее значения функции на отрезке и на интервале) – 2 часа

Тема 6. Раздел 5. Неопределённый интеграл

(Первообразная и неопределенный интеграл) – 2 часа

Тема 7. 5.2. Методы интегрирования тригонометрических функций.
Многочлены

(Методы интегрирования, понятие многочлен) – 2 часа

Тема 8. Раздел 6. Определённый интеграл

(Определение определенного интеграла как предела интегральной суммы. Теорема существования. Основные свойства определенного интеграла) – 2 часа

Итого 16ч

3.2. Структура и содержание практической части курса І семестр

Тема 1. Матрицы и определители

1.2. Обратная матрица – 2 часа

Тема 2. Векторная алгебра

2.2. Разложение определителей по элементам строки и столбца. Теорема Лапласа. Умножение определителей. Вектор и его модуль. Декартовы координаты векторов и точек – 2 часа

Тема 3. Системы линейных уравнений

Системы линейных уравнений с несколькими неизвестными (общая теория). Решение систем и линейных уравнений с n неизвестными. Правило Крамера — 2 часа

Тема 4. Раздел 4. Евклидовы пространства. Линейные операторы

4.2. Неравенство Коши-Буняковского. Ортогональный и ортонормированный базис. Процесс ортогонализации. Координаты вектора в ортонормированном базисе – 2 часа

Тема 5. Раздел 5. Билинейные и квадратичные формы

Стандартный вид квадратичной формы, изменение при невы рожденном линейном преобразовании, канонический вид. Положительная и отрицательная определенная квадратичная формы. Приведение квадратичной формы к сумме квадратов. Метод Лагранжа. Закон инерции — 2 часа

Тема 6. Положительно и отрицательно определенные квадратичные формы. Знакоопределенные квадратичные формы. Критерий Сильвестра -2 часа

Тема 7. Аналитическая геометрия на плоскости

Прямоугольная система координат на плоскости и в пространстве. Расстояние между двумя точками. Расстояние от точки до прямой. Деление отрезка в данном отношении. Площадь треугольника – 2 часа

Тема 8. Взаимное расположение прямых на плоскости. Смешанные задачи, относящиеся к уравнению прямой на плоскости. Параметрическое и общее уравнения плоскости. Условия компланарности вектора плоскости. Взаимное расположение двух плоскостей. Плоскость. Общее уравнение. Неполное уравнение. Нормальное уравнение. Прямая как пересечение двух плоскостей. Взаимное расположение двух прямых в пространстве. Взаимное расположение прямой и плоскости в пространстве — 2 часа

Итого 16ч

II семестр

Тема 1. Введение в математический анализ

Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики -2 часа

Тема 2. Предел и непрерывность функции

2.1. Окрестность точки. Предел функции в точке и в бесконечности. Односторонние пределы. Бесконечно малые, бесконечно большие, ограниченные функции и их свойства -2 часа

Тема 3. Непрерывность функции в точке. Односторонняя непрерывность.
 Точки разрыва функции первого и второго рода.

Формулировки основных свойств непрерывных функций. Непрерывность элементарных функций – 2 часа

- Тема 4. Дифференциальное исчисление функций одной переменной
- 3.2 Дифференцируемость функции и её связь с непрерывностью функции в точке. Дифференциал функции и его геометрический смысл. Формулы и правила дифференцирования 2 часа
- Тема 5. Дифференцирование сложных функций, неявных функций и функций, заданных параметрическими уравнениями. Производные высших порядков 2 часа

Тема 6. Исследование функций

Выпуклость и вогнутость, точки перегиба и асимптоты графика функции. План полного исследования и построения графика функции – 2 часа

Тема 7. Неопределённый интеграл

Метод непосредственного интегрирования. Метод интегрирования заменой переменной. Метод интегрирования по частям – 2 часа

Тема 8. Методы интегрирования тригонометрических функций. Многочлены — 2 часа

Итого 16ч

3.3. Структура и содержание КСР І семестр

- **Тема 1.** Элементарные преобразования Гаусса над строками матрицы (вычисление ранга матрицы, ранг суммы и произведения матриц). Линейная зависимость и независимость строк и столбцов матрицы. Теорема о базисном миноре -2 часа
- **Тема 2.** Свойства определителей. Транспозиция и перестановки. Миноры и алгебраические дополнения 2 часа
- **Тема 3.** Вычисление векторного и смешанного произведения векторов через их координаты. Их основные свойства и геометрический смысл. Базис. Ранг системы векторов -2 часа
- **Тема 4**. Метод последовательного исключения неизвестных. Метод Жордано-Гаусса. Теорема Кронекера-Капелле 2 часа
- **Тема 5.** Знакоопределенные квадратичные формы. Критерий Сильвестра 2 часа
 - **Тема 6**. Углы, образуемые двумя прямыми на плоскости 2 часа
- **Тема 7.** Плоскость. Общее уравнение. Неполное уравнение. Нормальное уравнение. Прямая как пересечение двух плоскостей. Взаимное расположение двух прямых в пространстве. Взаимное расположение прямой и плоскости в пространстве -2 часа
- **Тема 8.** Взаимное расположение двух прямых в пространстве. Угол между прямой и плоскостью. Угол между двумя плоскостями 2 часа

Итого 16ч

II семестр

Тема 1. Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел — 2 часа

- **Тема 2.** Число e. Второй замечательный предел 2 часа
- **Тема 3.** Геометрический и экономический смысл производной в точке. Уравнения касательной и нормали -2 часа
- **Тема 4.** Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции 2 часа
- **Тема 5.** Необходимые и достаточные условия экстремума. Наименьшее и наибольшее значения функции на отрезке и на интервале 2 часа
- **Тема 6.** Свойства неопределенного интеграла. Таблица основных интегралов 2 часа
- **Тема 7.** Интегрирование рациональных дробей. Интегрирование простейших иррациональных функций 2 часа
- **Тема 8.** Интеграл с переменным верхним пределом. Формула Ньютона-Лейбница 2 часа

Итого 16ч Таблица 3

							ца Э
		Виды учебной ра-					Кол-во
		боты, включая самостоятельную					баллов
№	Раздел						за
п/п		работу	студ	центов		Лит-ра	неделю
11/11	дисциплины	и труд	оемко	ость (в			
		часах)					
		Лек.	Пр.	КСР	CPC		
	І семе	естр					
1	Лк. Матрицы и определители.	2	_			1 - 7	12,5
	Действия над матрицами						
	КСР: Элементарные преобразования						
	Гаусса над строками матрицы (вы-						
	числение ранга матрицы, ранг суммы						
	и произведения матриц). Тема СРС:			2			
	Умножение на число. Сложение матриц.			2			
	Ранг суммы и произведения матриц				2		
2	Лк. Обратная матрица	2	2			1 - 7	12,5
	Пр. Матрицы и определители.						
	Обратная матрица						
	Тема СРС: Решение задач по теореме о						
	базисном миноре Нахождение обратной						
	матрицы методом Гаусса				4		
3	Лк. Векторная алгебра. Определители	2	_			1 - 7	12,5
	второго и третьего порядков и их						
	свойства						
	КСР: Свойства определителей.						
	Транспозиция и перестановки.						
	Миноры и алгебраические						
	дополнения			2			
	Тема СРС: Вычисление определителей.			2			
	Нахождение миноров и алгебраических						
	дополнений				2		
4	Пр. Векторная алгебра.	_	2	_	4	1 - 7	12,5

	T CDC: V	1	1	1			
	Тема СРС: Умножение определителей.						
	Декартовы координаты векторов и точек					4 =	10.7
5	Лк. Скалярное произведение век-	2	_			1 - 7	12,5
	торов: его выражение через коор-						
	динаты. Угол между векторами.						
	КСР: Вычисление векторного и						
	смешанного произведения векторов						
	через их координаты. Их основные						
	свойства и геометрический смысл. Базис.						
	Ранг системы векторов			2			
	Тема СРС: Скалярное произведение						
	векторов. Вычисление векторного и сме-						
	шанного произведения векторов через их						
	координаты				2		10.7
6	Лк. Системы линейных уравнений.	2				1 - 7	12,5
	Однородные системы и свойства их						
	решений.			_			
	Тема СРС: Вычисление однородных						
	линейных систем. Вычисление систем						
	линейных уравнений методом Крамера				4		10.7
_	Пр. Системы линейных уравнений.	_	2			1 - 7	12,5
7	Тема СРС: Вычисление систем ли-						
	нейных уравнений матричным методом.			_			
	Решение системы линейных уравнений						
	теоремой Кронекера-Капелле. Метод						
0	Жордано-Гаусса.	2			2	1 7	10.5
8	Лк. Матричный метод решения	2	_			1 - 7	12,5
	системы линейных уравнений.						
	КСР: Метод последовательного						
	исключения неизвестных. Метод Жор-						
	дано-Гаусса. Теорема Кронекера-						
	Капелле						
	Тема СРС: Скалярное произведение в			2			
	различных пространствах. Координаты				4		
9	вектора в ортонормированном базисе	2			4	1 – 7	12.5
9	Лк. Евклидовы пространства. Линейные операторы. Скалярное	2				1 - /	12,5
	произведение.						
	Тема СРС: Примеры нахождения						
	подпространств. Вычисление проекции						
	вектора на подпространство				2		
10	Пр. Евклидовы пространства.		2			1 – 7	12,5
10	Линейные операторы					1 - /	12,5
	Тема СРС: Положительная и отри-						
	цательная определенная квадратичная			_			
	формы. Приведение квадратичной						
	формы к сумме квадратов				4		
11	Пр. Билинейные и квадратичные	_	2		'	1 – 7	12,5
11	формы					'	12,5
	Тема СРС: Критерий Сильвестра.			-			
	Вычисление ортогональных матриц				2		
		1		1		İ	1

12	Пр. Положительно и отрицательно		2			1 – 7	12,5
12	определенные квадратичные формы.					1 - /	12,3
	Знакоопределенные квадратичные						
	формы. Критерий Сильвестра			_			
	Тема СРС: Деление отрезка в данном						
	отношении. Нахождение площади тре-						
	угольника. Вычисление уравнения						
	прямой на плоскости				2		
13	КСР: Знакоопределенные						12,5
13	квадратичные формы. Критерий						12,3
	Сильвестра						
	Тема СРС: Углы, образуемые двумя			2			
	прямыми на плоскости. Вычисление						
	смешанных задач, относящихся к						
	уравнению прямой на плоскости				2		
14	Пр. Аналитическая геометрия на		2			1 – 7	12,5
17	плоскости					1 /	12,3
	Прямоугольная система координат на						
	плоскости и в пространстве.						
	КСР: Углы, образуемые двумя			2			
	прямыми на плоскости			-			
	Тема СРС: Условия компланарности						
	вектора плоскости. Неполное и						
	нормальное уравнение				2		
15	Лк. Аналитическая геометрия на	2	1_			1 – 7	12,5
10	плоскости Прямая на плоскости.	_				1 ,	12,5
	КСР: Плоскость. Общее уравнение.						
	Неполное уравнение. Нормальное						
	уравнение. Прямая как пересечение						
	двух плоскостей.						
	Тема СРС: Взаимное расположение						
	прямой и плоскости в пространстве.			2			
	Взаимное расположение двух прямых в						
	пространстве				2		
16	Пр. Взаимное расположение прямых	_	2			1 – 7	12,5
	на плоскости. Смешанные задачи,						
	относящиеся к уравнению прямой на						
	плоскости.						
	КСР: Взаимное расположение двух пря-						
	мых в пространстве. Угол между прямой						
	и плоскостью. Угол между двумя						
	плоскостями						
	Тема СРС: Нахождение угла между						
	двумя плоскостями. Нахождение			2			
	гиперболы, окружности, параболы				2		
Итог	о по семестру:	16	16	16	42		200
	II семестр						
1	Лк. Введение в математический 2	-	-			1 - 7	12,5
	анализ. Множества. Функция.						
	Тема СРС: Операции над						
	множествами Область						
1	определение функции. Сложные				2		

и обратные функции. Нахождение графика функции. Предел функции в точке и в бескопечности функции. Предел функции. Основные элементарные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Решение задач по второму замечательному пределу. В бескопечность точки. Предел функции в точке и в бескопечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Дагранжа, теорема Копи, правилю Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
предела функции. Предел функции в точке и в бесконечности 2 Пр. Сложные и обратные функции. Основные элементарные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Решение мункции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Ферма, теорема Коши, правило Лопиталя и применение сто к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
функции в точке и в бесконечности 2 Пр. Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Решение в бескопечность. Первый замечательный предел Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2	
бескопечности 2 Пр. Сложные и обратные функции. График функции. Основные элементарные функции, их свойства и графики - 2 - Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Решение задач по второму замечательному пределу. 2 1 − 7 3 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел 2 2 Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 2 4 Лк. предел и непрерывность функции 2 1 − 7 4 Лк. предел и непрерывность функции в сорема Дограма дифференциального исчисления: теорема Ферма, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 2 1 − 7 5 Пр. Непрерывность функции в 2 1 − 7	
Пр. Сложные и обратные функции. Основные элементариые функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Решение функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределаенностей. Первый замечательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Ферма, теорема Копш, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1–7	
функции. График функции. Основные элементарные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем определах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Ферма, теорема Коши, правило Лопиталя и применение сго к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
Основные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. В пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Копии, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	12,5
Основные функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. В пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Копии, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	,
функции, их свойства и графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2	
графики Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу 3 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Даграпжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
Тема СРС: Решение задач по первому замечательному пределу. Решение задач по второму замечательному пределу 4 3 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Дагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
первому замечательному пределу. Решение задач по второму замечательному пределу 3	
Решение задач по второму замечательному пределу 4 1 - 7 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 2 1 - 7 4	
3 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений	
3 Пр. Предел и непрерывность функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 Пр. Непрерывность функции в 2	
функции. Окрестность точки. Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Ферма, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	12,5
Предел функции в точке и в бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	12,3
бесконечности. КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
КСР: Формулировки основных теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
теорем о пределах функций. Основные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
новные виды неопределенностей. Первый замечательный предел Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 1 — 7 Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в	
Первый замечательный предел 2 Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 4 Лк. предел и непрерывность функции КСР: 4 КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 2 5 Пр. Непрерывность функции в 2	
Тема СРС: Вычисление уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 - 7	
уравнения касательной и нормали. Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 2 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 — 7	
Определение производной в точке и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 - 7	
и на множестве. Формулы и правила дифференцирования. Примеры решений 4 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1–7	
правила дифференцирования. 1 Лк. предел и непрерывность функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
Примеры решений 2 4 Лк. предел и непрерывность функции 2 КСР: Число е. Второй замечательный предел 2 Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
Примеры решений 2 4 Лк. предел и непрерывность функции 2 КСР: Число е. Второй замечательный предел 2 Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
4 Лк. предел и непрерывность функции 2 КСР: Число е. Второй замечательный предел 2 Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
функции КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 — 7	12,5
КСР: Число е. Второй замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
замечательный предел Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 2 1 1 1 2	
Тема СРС: Основные теоремы дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
дифференциального исчисления: теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 5 Пр. Непрерывность функции в 2 1 – 7	
теорема Ферма, теорема Ролля, теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
теорема Лагранжа, теорема Коши, правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
правило Лопиталя и применение его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
его к нахождению предела функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
функции. Примеры решений 4 5 Пр. Непрерывность функции в 2	
5 Пр. Непрерывность функции в 2 1-7	
	12,5
точке. Односторонняя	14,5
непрерывность.	
Тема СРС: Нахождение	
наименьшего и наибольшего	
значения функции на отрезке и на	
интервале. Выпуклость и	
вогнутость, точки перегиба и	
асимптоты графика функции 2	
6 Лк. Дифференциальное 2 1-7	12,5
исчисление функций одной пе-	
ременной. Определение	

		1	1	<u> </u>			
	производной в точке и на						
	множестве.			2			
	КСР: Геометрический и						
	экономический смысл про-						
	изводной в точке. Уравнения						
	касательной и нормали						
	Тема СРС: План полного						
	исследования и построения						
	графика функции. Вычисление						
	неопределенного интеграла						
	методом непосредственного						
	интегрирования. Таблица						
	основных интегралов						
7	Пр. Дифференцируемость		2			1 – 7	12,5
'	функции и её связь с не-					1 /	12,3
	прерывностью функции в						
	точке.						
	Тема СРС: Вычисление						
	неопределенного интеграла						
	методом интегрирования заменой						
	переменной. Примеры решений.						
	Методы интегрирования						
	тригонометрических функций.						
	Теорема Безу. Примеры решений.	_	_		2		
8	Лк. Дифференцирование	2	2			1 - 7	12,5
	сложных функций, неявных						
	функций и функций, заданных						
	параметрическими						
	уравнениями. Производные						
	высших порядков.						
	Пр. Дифференцирование						
	сложных функций, неявных						
	функций и функций, заданных						
	параметрическими						
	уравнениями.						
	Тема СРС: Интегрирование						
	рациональных дробей. Примеры						
	решений. Интеграл с переменным						
	верхним пределом. Формула						
	Ньютона-Лейбница				4		
9	КСР: Основные теоремы			2		1 – 7	12,5
	дифференциального						
	исчисления: теорема Ферма,						
	теорема Ролля, теорема Ла-						
	гранжа, теорема Коши, правило						
	Лопиталя и применение его к						
	нахождению предела функции						
	Тема СРС: Вычисление						
	определенного интеграла методом						
	замены переменной и методом						
	интегрирования по частям				2		
10	Лк. Исследование функций	2			4	1 – 7	12,5
10	ль. исследование функции	4			4	1 – /	14,3

	КСР: Необходимые и						
	достаточные условия экстре-			2			
	_			2			
	•						
	наибольшее значения функции						
	на отрезке и на интервале						
	Тема СРС: Операции над						
	комплексными числами.						
	Алгебраические						
	тригонометрические формы.						
	Формулы Муавра и Эйлера.						
11	Пр. Исследование функций		2			1 - 7	12,5
	Тема СРС: Решение						
	обыкновенных						
	дифференциальных уравнений.						
	Дифференциальное уравнения						
	Бернулли. Дифференциальные						
	уравнения в полных						
	дифференциалах.						
	Интегрирующий множитель.				2		
12	Лк. Неопределённый интеграл	2				1 – 7	12,5
	КСР: Свойства неопреде-						,-
	ленного интеграла. Таблица						
	основных интегралов						
	Тема СРС: Решение			2			
	дифференциальных уравнении			2			
	высших порядков способом						
	понижения их порядка. Решение						
	<u> </u>						
	линейно-однородного						
	дифференциального уравнения						
	второго порядка с постоянными						
10	коэффициентами.		2		2	1 7	10.5
13	Пр. Неопределённый интеграл.		2			1 - 7	12,5
	Метод непосредственного интег-						
	рирования						
	Тема СРС: Решение						
	дифференциальных уравнений,						
	когда отсутствует независимая						
	переменная. Решение линейно-						
	однородного дифференциального						
	уравнения высших порядков с						
	постоянными коэффициентами				2		
14	Лк. Методы интегрирования	2	2			1 - 7	12,5
	тригонометрических функций.						
	Многочлены.						
	Пр. Методы интегрирования три-						
	гонометрических функций.						
	Многочлены						
	Тема СРС: Решение линейно-						
	неоднородного						
	дифференциального уравнения						
	второго порядка с постоянными						
	коэффициентами.				2		
	коэффиционтами.	l	l	I	<u> </u>		

15	КСР: Интегрирование			2		1 - 7	12,5
	рациональных дробей.						
	Интегрирование простейших						
	иррациональных функций						
	Тема СРС: Необходимый						
	признак сходимости числового						
	ряда. Гармонический ряд.						
	Нахождения суммы числового						
	ряда				2		
16	Лк. Определённый интеграл	2				1 - 7	12,5
	КСР: Интеграл с переменным						
	верхним пределом. Формула						
	Ньютона-Лейбница						
	Тема СРС: Основные признаки						
	сходимости числовых рядов:						
	Даламбера, Коши. Теорема			2			
	Лейбница. Абсолютно и условно						
	сходящиеся знакочередующиеся						
	ряды.				2		
Итог	о по семестру:	16	16	16	42		200

Формы контроля и критерии начисления баллов

Контроль усвоения студентом каждой темы осуществляется в рамках балльно-рейтинговой системы (БРС), включающей текущий, рубежный и итоговый контроль. Студенты <u>1 курсов</u>, обучающиеся по кредитно-рейтинговой системе обучения, могут получить максимально возможное количество баллов - 300. Из них на текущий и рубежный контроль выделяется 200 баллов или 49% от общего количества.

На итоговый контроль знаний студентов выделяется 51% или 100 баллов.

Порядок выставления баллов: 1-й рейтинг (1-7 недели до 12,5 баллов+12,5 баллов (8 неделя — Рубежный контроль №1) = 100 баллов), 2-й рейтинг (9-15 недели до 12,5 баллов+12,5 баллов (16 неделя — Рубежный контроль №2) = 100 баллов), итоговый контроль 100 баллов.

К примеру, за текущий и 1-й рубежный контроль выставляется 100 баллов: лекционные занятия — 21 балл, за практические занятия (КСР, лабораторные) — 31,5 балл, за СРС — 17,5 баллов, требования ВУЗа — 17,5 баллов, рубежный контроль — 12,5 баллов.

В случае пропуска студентом занятий по уважительной причине (при наличии подтверждающего документа) в период академической недели деканат факультета обращается к проректору по учебной работе с представлением об отработке студентом баллов за пропущенные дни по каждой отдельной дисциплине с последующим внесением их в электронный журнал.

Итоговая форма контроля по дисциплине (экзамен) проводится как в форме тестирования, так и в традиционной (устной) форме. Тестовая форма итогового контроля по дисциплине предусматривает: для естественнонаучных направлений — 10 тестовых вопросов на одного студента, где правильный

ответ оценивается в 10 баллов. Тестирование проводится в электронном виде, устный экзамен на бумажном носителе с выставлением оценки в ведомости по аналогичной системе с тестированием.

Таблица 4

Неделя	Активное участие на лекционных занятиях, написание конспекта и выполнение других видов работ*	Активное участие на практически х (семинарски х) занятиях, КСР	СРС Написание реферата, доклада, эссе Выполнение других видов работ	Выполнение положения высшей школы (установленная форма одежды, наличие рабочей папки, а также других пунктов устава высшей школы)	Всего
1	2	3	4	5	7
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Первый рейтинг	24	32	24	20	100
1	3	4	3	2,5	12,5
2	3	4	3	2,5	12,5
3	3	4	3	2,5	12,5
4	3	4	3	2,5	12,5
5	3	4	3	2,5	12,5
6	3	4	3	2,5	12,5
7	3	4	3	2,5	12,5
8	3	4	3	2,5	12,5
Второй рейтинг	24	32	24	20	100
Итого	48	64	48	40	200

Формула вычисления результатов дистанционного контроля и итоговой формы контроля по дисциплине за семестр для студентов 1-х курсов:

$$ME = \left[\frac{(P_1 + P_2)}{2}\right] \cdot 0.49 + 3u \cdot 0.51$$

, где ИБ — $umoroвый балл, <math>P_1$ - итоги первого рейтинга, P_2 - итоги второго рейтинга, Эu — результаты итоговой формы контроля (экзамен).

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ

Самостоятельная работа позволяет оптимально сочетать теоретическую и составляющие обучения. При обеспечивается практическую ЭТОМ упорядочивание теоретических знаний, что, в конечном счёте, приводит к повышению мотивации обучающихся в их освоении. Самостоятельная работа планируется и организуется с целью углубления и расширения теоретических самостоятельного логического формирования Организация этой работы позволяет оперативно обновлять содержание образования, создавая предпосылки для формирования базовых (ключевых) компетенций категории интеллектуальных (аналитических) и обеспечивая, таким образом, качество подготовки специалистов на конкурентоспособном уровне. Из всех ключевых компетенций, которые формируются в процессе выполнения самостоятельных работ, следует выделить следующие: умение учиться, умение осуществлять поиск и интерпретировать информацию, повышение ответственности за собственное обучение.

Самостоятельная работа студентов проводится с целью:

- систематизации и закрепления полученных теоретических знаний и практических умений студентов;
- углубления и расширения теоретических знаний;
- формирования умений использовать справочную и специальную литературу;
- развития познавательных способностей и активности студентов:
- творческой инициативы, самостоятельности, ответственности и организованности;
- формирования самостоятельности мышления, способностей к саморазвитию, самосовершенствованию и самореализации;
- развития исследовательских умений.

По дисциплине «Высшая математика» используется два вида самостоятельной работы:

- аудиторная;
- внеаудиторная.

К основным аудиторным видам относятся:

- Активная работа на лекциях
- Активная работа на практических занятиях
- Контрольно-обучающие программы тестирования (КОПТ).
- Выполнение контрольных работ.

Внеаудиторная работа проводится в следующих видах:

- Проработка лекционного материала,
- Подготовка к практическим занятиям,
- Подготовка к аудиторным контрольным работам,

- Выполнение ИДЗ,
- Подготовка к защите ИДЗ,
- Подготовка к зачету, экзамену.

4.1. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине «Высшая математика» включает в себя:

Таблица 5.

№ π/π	Объем СРС в часах	Тема СРС	Форма и вид СРС	Форма контроля
1	2	Умножение на число. Сложение матриц. Ранг суммы и произведения матриц	Письменное решение упражнений и задач. ИДЗ (Индивидуальное домашнее задание)	Защита работы
2	4	Решение задач по теореме о базисном миноре Нахождение обратной матрицы методом Гаусса	Письменное решение упражнений и задач. ИДЗ	Защита работы
3	2	Вычисление определителей. Нахождение миноров и алгебраических дополнений	Письменное решение упражнений и задач. ИДЗ	Защита работы
4	4	Умножение определителей. Декартовы координаты векторов и точек	Письменное решение упражнений и задач. ИДЗ	Защита работы
5	2	Скалярное произведение векторов. Вычисление векторного и смешанного произведения векторов через их координаты	Письменное решение упражнений и задач. ИДЗ	Защита работы
6	4	Вычисление однородных линейных систем. Вычисление систем линейных уравнений методом Крамера	Письменное решение упражнений и задач. ИДЗ	Защита работы
7	2	Вычисление систем линейных уравнений матричным методом. Решение системы линейных уравнений теоремой Кронекера-Капелле. Метод Жордано-Гаусса.	Письменное решение упражнений и задач. ИДЗ	Защита работы
8	4	Скалярное произведение в различных пространствах. Координаты вектора в ортонормированном базисе	Письменное решение упражнений и задач. ИДЗ	Защита работы
9	2	Примеры нахождения подпространств. Вычисление проекции вектора на подпространство	Письменное решение упражнений и задач. ИДЗ	Защита работы
10	4	Положительная и отрицательная определенная квадратичная формы. Приведение квадратичной формы к сумме квадратов	Письменное решение упражнений и задач. ИДЗ	Защита работы
11	2	Критерий Сильвестра. Вычисление ортогональных матриц	Письменное решение упражнений и задач. ИДЗ	Защита работы
12	2	Деление отрезка в данном отношении. Нахождение площади треугольника.	Письменное решение упражнений и задач. ИДЗ	Защита работы

<u> </u>		D "		
		Вычисление уравнения прямой на плоскости		
		Углы, образуемые двумя прямыми на	Письменное решение	Защита
13		плоскости. Вычисление смешанных	упражнений и задач. ИДЗ	работы
13	_	задач, относящихся к уравнению		
	2	прямой на плоскости		
		Условия компланарности вектора	Письменное решение	Защита
14		плоскости. Неполное и нормальное	упражнений и задач. ИДЗ	работы
	2	уравнение	-	
		Взаимное расположение прямой и	Письменное решение	Защита
15		плоскости в пространстве. Взаимное	упражнений и задач. ИДЗ	работы
	2	расположение двух прямых в		
	2	пространстве	П	2
16		Нахождение угла между двумя	Письменное решение	Защита
16	2	плоскостями. Нахождение гиперболы,	упражнений и задач. ИДЗ	работы
I.I	2	окружности, параболы		
ИТОГО	о: 42 часа			
		ІІ семестр		
		Операции над множествами	Письменное решение	Защита
		Область определение функции.	упражнений и задач. ИДЗ	работы
		Сложные и обратные функции.		
1	2	Нахождение графика функции		
		Вычисление предела функции.		
		Предел функции в точке и в		
		бесконечности	П	2
		Решение задач по первому	Письменное решение	Защита
2	4	замечательному пределу.	упражнений и задач. ИДЗ	работы
		Решение задач по второму		
		замечательному пределу Вычисление уравнения	Письменное решение	Защита
		Вычисление уравнения касательной и нормали.	упражнений и задач. ИДЗ	работы
		Определение производной в	упражнении и задач. Идэ	раооты
3	2	точке и на множестве. Формулы		
		и правила дифференцирования.		
		Примеры решений		
		Основные теоремы	Письменное решение	Защита
		дифференциального	упражнений и задач. ИДЗ	работы
		исчисления: теорема Ферма,)	racorbi
		теорема Ролля, теорема		
4	4	Лагранжа, теорема Коши,		
		правило Лопиталя и		
		применение его к нахождению		
		предела функции. Примеры		
		решений		
	2	Нахождение наименьшего и	Письменное решение	Защита
		наибольшего значения функции	упражнений и задач. ИДЗ	работы
_		на отрезке и на интервале.	, ,	_
5	2	Выпуклость и вогнутость,		
		точки перегиба и асимптоты		
		графика функции		

	<u> </u>	п	п	
		План полного исследования и	Письменное решение	Защита
		построения графика функции.	упражнений и задач. ИДЗ	работы
		Вычисление неопределенного		
6	4	интеграла методом		
		непосредственного		
		интегрирования. Таблица		
		основных интегралов		
		Вычисление неопределенного	Письменное решение	Защита
		интеграла методом	упражнений и задач. ИДЗ	работы
		интегрирования заменой		
		переменной. Примеры		
7	2	решений. Методы		
,	_	интегрирования		
		тригонометрических функций.		
		Теорема Безу. Примеры		
		решений.	Пиот могите с	201111777
		Интегрирование рациональных	Письменное решение	Защита
0		дробей. Примеры решений.	упражнений и задач. ИДЗ	работы
8	4	Интеграл с переменным		
		верхним пределом. Формула		
		Ньютона-Лейбница		
		Вычисление определенного	Письменное решение	Защита
9	2	интеграла методом замены	упражнений и задач. ИДЗ	работы
	_	переменной и методом		
		интегрирования по частям		
		Операции над комплексными	Письменное решение	Защита
		числами. Алгебраические	упражнений и задач. ИДЗ	работы
		тригонометрические формы.		
		Формулы Муавра и Эйлера.		
		Сложение (вычитание),		
10	4	умножение, деление и		
		извлечение корня комплексных		
		чисел.		
		Решение алгебраических		
		уравнений различных		
		порядков.		
		Решение обыкновенных	Письменное решение	Защита
		дифференциальных уравнений.	упражнений и задач. ИДЗ	работы
		Дифференциальное уравнения		1
11	2	Бернулли. Дифференциальные		
	_	уравнения в полных		
		дифференциалах.		
		ифференциалах. Интегрирующий множитель.		
		Решение дифференциальных	Письменное решение	Защита
		уравнении высших порядков	упражнений и задач. ИДЗ	работы
		1	упражнении и задач. идэ	Paooibi
12	2	порядка. Решение линейно-		
		однородного		
		дифференциального уравнения		
		второго порядка с постоянными		
Ì	l	коэффициентами.		

		Решение дифференциальных	Письменное решение	Защита
13	2	уравнений, когда отсутствует	упражнений и задач. ИДЗ	работы
		независимая переменная.		
		Решение линейно-однородного		
		дифференциального уравнения		
		высших порядков с		
		постоянными коэффициентами.		
		Решение линейно-	Письменное решение	Защита
14	2	неоднородного	упражнений и задач. ИДЗ	работы
		дифференциального уравнения		
		второго порядка с постоянными		
		коэффициентами.		
		Необходимый признак	Письменное решение	Защита
15	2	сходимости числового ряда.	упражнений и задач. ИДЗ	работы
		Гармонический ряд.		
		Нахождения суммы числового		
		ряда.		
		Основные признаки	Письменное решение	Защита
16	2	сходимости числовых рядов:	упражнений и задач. ИДЗ	работы
		Даламбера, Коши. Теорема		
		Лейбница. Абсолютно и		
		условно сходящиеся		
		знакочередующиеся ряды.		
Итого	о: 42 часа			

4.2. Характеристика заданий для самостоятельной работы обучающихся и методические рекомендации по их выполнению

Индивидуальные домашние задания (ИДЗ) по дисциплине «Высшая математика» предназначены для студентов очной форм обучения нематематических факультетов, изучающих курс математики в соответствии с требованиями Федеральных государственных образовательных стандартов (ФГОС) по соответствующим направлениям подготовки. Работа содержит 12 индивидуальных домашних заданий (ИДЗ) по 30 вариантов в каждом, содержащих различные задания по дисциплине «Высшая математика».

Целью настоящего комплекта ИДЗ является ознакомление студентов с основами линейной алгебры и началами математического анализа. При решении заданий по линейной алгебре учащиеся отработают навыки действий с определителями и матрицами, а также решения систем неоднородных и однородных линейных алгебраических уравнений. При решении заданий по математическому анализу студенты освоят технику вычисления пределов функции, получат навыки исследования функций одной переменной с применением аппарата дифференциального исчисления.

В целом, самостоятельное решение индивидуальных заданий позволяет углубить теоретические знания, отработать практические навыки решения задач по дисциплине. Во введении к работе приведены примеры решения типовых заданий по теме с необходимыми методическими указаниями.

Накопление большого количества оценок за ИДЗ, самостоятельные и контрольные работы в аудитории позволяет контролировать учебный процесс, управлять им, оценивать качество усвоения изучаемого материала.

4.3. Требования к предоставлению и оформлению результатов самостоятельной работы

Данный элемент должен содержать описание целей выполнения задания студентом, в соответствии с которыми ставятся задачи, которые предстоит ему решить. Должны быть указаны правила выбора варианта, структура работы, требования к представлению и оформлению результатов (если нет методических инструкций и других руководств для выполнения), этапы выполнения.

ИДЗ (индивидуальное домашнее задание) выполняется на отдельной тетради по математике в рукописной форме. Тетрадь должна быть в клетку, желательно 48 листов. Все записи в тетрадях делать синей пастой, при необходимости выделить текст, можно использовать другие цвета. Рисунки выполняются простыми карандашами. Писать и рисовать в тетради только с разрешения преподавателя.

Решение должно быть написано в полном объеме и в понятной форме. Готовое решенное задание должно быть предоставлено преподавателю в срок сдачи. На титульном листе тетради должны быть указаны Ф.И.О. студента, направление, курс и группа.

4.4. Критерии оценки выполнения самостоятельной работы по дисциплине «Высшая математика»

Критериями для оценки самостоятельной работы могут служить:

- точность ответа на поставленный вопрос;
- формулировка целей и задач работы;
- раскрытие (определение) рассматриваемого понятия (определения, проблемы, термина);
- четкость структуры работы;
- самостоятельность, логичность изложения;
- наличие выводов, сделанных самостоятельно.

5. СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ И ИНФОРМАЦИОННО-МЕ-ТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

5.1. Основная литература

- 1. Курбанов, И.К. Высшая математика [Текст] : учебник для студентов нематемат. спец. / И. К. Курбанов, Р. К. Раджабов ; Рос.-Тадж. (славян.) ун-т. 2-е изд., перераб. и доп. Душанбе : [б. и.], 2013. 363 с.
- 2. Высшая математика для экономического бакалавриата в 3 ч. Часть 1 [Текст]: учебник и практикум для академического бакалавриата / под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 276 с.
- 3. Высшая математика для экономического бакалавриата в 3 ч. Часть 2 [Текст]: учебник и практикум для академического бакалавриата / под

- редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 241 с.
- 4. Высшая математика для экономического бакалавриата в 3 ч. Часть 3 [Текст]:: учебник и практикум для академического бакалавриата / под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 418 с.
- 5. Кремер, Н. Ш. Высшая математика для экономического бакалавриата [Электронный ресурс]: учебник и практикум / Н. Ш. Кремер; под редакцией Н. Ш. Кремера. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 909 с. https://biblio-online.ru
- 6. Клюшин, В. Л. Высшая математика для экономистов. Задачи, тесты, упражнения [Электронный ресурс]: учебник и практикум для бакалавриата и специалитета / В. Л. Клюшин. 5-е изд., перераб. и доп. Москва: Издательство Юрайт, 2024. 165 с. https://biblio-online.ru
- 7. Попов, А. М. Высшая математика для экономистов [Электронный ресурс]: учебник и практикум для прикладного бакалавриата / А. М. Попов, В. Н. Сотников; под редакцией А. М. Попова. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 566 с. https://biblio-online.ru

5.2. Дополнительная литература

- 1. Высшая математика для экономистов, под ред. Проф. Н.Ш. Кремера, 3-е издание М.: Юнити, 2006. 478с.
- 2. Общий курс высшей математики для экономистов, под. общ. ред., проф. В.И. Ермакова, М.: Инфра, М., 2007. 655 с.
- 3. Сборник задач по высшей математике для экономистов, под общ. ред., проф. В.И. Ермакова М.: Инфра, М., 2007. 574 с.

Интернет-ресурсы:

- 1. http://webmath.exponenta.ru.
- 2. http://mirknig.com.
- 3. http://www.toehelp.ru.
- 4. http://e.lanbook.com

6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Работа с литературой -1 час в неделю;

Подготовка к практическому занятию – 1 час;

Подготовка к зачету -5 часов;

Для понимания материала и качественного его усвоения рекомендуется следующая последовательность действий:

- 1. В течение недели выбрать время для работы с литературой по высшей и элементарной математике.
- 2. При подготовке к практическим занятиям следующего дня, необходимо сначала прочитать основные понятия и теоремы по теме домашнего задания. При выполнении упражнения или задачи нужно сначала понять, что требуется в задаче, какой теоретический материал нужно использовать, наметить план решения задачи. Если это не дало результатов, и Вы сделали задачу «по образцу» аудиторной задачи, или из методического пособия, нужно после решения такой задачи обдумать ход решения и попробовать решить аналогичную задачу самостоятельно.

Основная часть теоретического материала курса дается в ходе практических занятий, хотя часть материала может изучаться и самостоятельно по учебной литературе. При изучении теоретического материала следует обратить внимание на следующие моменты.

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Умение находить область определения и множество значений, нули функции, промежутки знакопостоянства и монотонности, точки экстремума — залог успешного решения задач единого экзамена. Можно выделить два обобщенных умения, связанных с исследованием свойств функций:

- 1) уметь «читать» график функции и переводить его свойства с графического языка на алгебраический и наоборот;
- 2) уметь работать с формулой, задающей функцию, обосновывая или проверяя наличие указанных свойств, что связывает задачи данного блока и с другими темами школьного курса (решение уравнений и неравенств, вычисление производных и др.)

В подготовке к решению подобных заданий поможет таблица, в которой перечислены свойства функций и дан их перевод на язык графиков.

Другим важным умением является умение оперировать с формулой, задающей функцию. Причем работа с формулой связывает задания данного блока с другими темами курса алгебры и начала анализа.

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

При проведении занятий по дисциплине «Высшая математика» используются как классические формы и методы обучения (лекции, практические занятия), так и активные методы обучения (контрольно-обучающие программы тестирования по всем разделам изучаемого материала, работа с ЭУК при подготовке к занятиям, контрольным работам и рейтингового контроля.). Применение любой формы обучения предполагает также использование новейших IT-обучающих технологий.

При проведении лекционных занятий по дисциплине «Высшая математика» целесообразно использовать мультимедийное презентационное оборудование, чтобы сделать более наглядными и понятными доказательства теорем, методики и алгоритмы решения задач и примеров, иллюстрирующих

теоретические выводы и их прикладную направленность. Преподаватель использует компьютерные и мультимедийные средства обучения (презентации, содержащиеся в ЭУК), мультимедиа лекции, а также наглядно-иллюстрационные (в том числе раздаточные) материалы.

Университете созданы специальные условия обучающихся с ограниченными возможностями здоровья - специальные учебники, учебные пособия и дидактические материалы, специальные технические средства обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую проведение групповых техническую помощь, И индивидуальных коррекционных занятий, обеспечение доступа в здания организаций и другие условия, без которых невозможно или затруднено освоение дисциплины обучающимися с ограниченными возможностями здоровья.

Обучающимся с ограниченными возможностями здоровья предоставляются бесплатно специальные учебники и учебные пособия, иная учебная литература, а также обеспечивается:

- наличие альтернативной версии официального сайта организации в сети "Интернет" для слабовидящих;
- присутствие ассистента, оказывающего обучающемуся необходимую помощь;
- обеспечение выпуска альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы);

возможность беспрепятственного доступа обучающихся в учебные помещения, столовые, туалетные и другие помещения организации, а также пребывания в указанных помещениях (наличие пандусов, поручней, расширенных дверных проёмов, лифтов).

8. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Форма итоговой аттестации <u>экзамен на 1 семестре</u>, экзамен на 2 <u>семестре</u>.

Итоговая система оценок по кредитно-рейтинговой системе с использованием буквенных символов

Оценка по буквенной системе	Диапазон соответствующих наборных баллов	Численное выражение оценочного балла	Оценка по традиционной системе
A			
	10	95-100	Отлично
	9	90-94	
B+	8	85-89	
В	7	80-84	Хорошо
В-	6	75-79	

C +	5	70-74		
C	4	65-69		
C-	3	60-64	Vionicationization	
D +	2	55-59	Удовлетворительно	
D	1	50-54		
Fx	0	45-49	Неудовлетворительно	
F	0	0-44		

Содержание текущего контроля, промежуточной аттестации, итогового контроля раскрываются в фонде оценочных средств, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС ВО.

ФОС по дисциплине является логическим продолжением рабочей программы учебной дисциплины. ФОС по дисциплине прилагается.